...
首页> 外文期刊>Fuel >Modeling and parametric analysis of nitrogen and sulfur oxide removal from oxy-combustion flue gas using a single column absorber
【24h】

Modeling and parametric analysis of nitrogen and sulfur oxide removal from oxy-combustion flue gas using a single column absorber

机译:使用单塔吸收塔从氧气燃烧烟道气中脱除氮和硫的建模和参数分析

获取原文
获取原文并翻译 | 示例
           

摘要

Oxy-coal combustion has great potential as one of the major CO2 capture technologies for power generation from coal. In oxy-coal combustion, the oxygen source is a high concentration oxygen stream and the product flue gas consists primarily of CO2 and H2O with contaminants like nitrogen oxides (NOX), sulfur oxides (SOX) and non-condensable gases like argon, oxygen and nitrogen. NOX and SOX removal can be achieved via traditional selective catalytic reduction (SCR) and flue gas desulfurization (FGD). These traditional methods however result in relatively high capital cost and energy requirement and face complex material handling challenges. White et al. proposed a different approach to NOX/SOX removal based on the nitric acid and lead-chamber chemistry process (White et al., 2010). This two-column design utilizes an intermediate and a high-pressure reactive absorption column connected in series to respectively remove SOX and NOX from the high CO2-concentration flue gas. In this study, we propose a modification to this two-column process that achieves the complete removal of SOX and NOX from the CO2 stream in a single column. We demonstrate by means of pressure sensitivity studies that this new design can meet the same separation targets as the two-column process in fewer column stages and half the feed water requirement by exploiting the pressure dependence of the rate determining NO oxidation reaction. Furthermore, we make use of parametric studies to analyze the dependence of NOX/SOX removal on key design and operating parameters for the proposed system: pressure, vapor hold-upper stage and water flow rate. Results show that the process is strongly pressure dependent, with a 3-order of magnitude decrease in required residence time when the operating pressure is varied from 4 bars to 30 bars. Vapor holdup volume and feed water flow rate have a significant impact on NOX/SOX removal up to a point - about 20 m(3) and 2 kg/s respectively for the case analyzed. Beyond these values, column performance shows substantially less sensitivity to increasing holdup volume or water flow rate. The analysis presented in this paper also shows that recycling bottoms liquid can reduce the feed water requirement by up to 40% without significantly affecting the exit gas purity. (C) 2015 Elsevier Ltd. All rights reserved.
机译:煤制氧作为主要的CO2捕集技术之一,具有很大的潜力。在氧气煤燃烧中,氧气源是高浓度氧气流,并且烟道气主要由CO2和H2O组成,污染物包括氮氧化物(NOX),硫氧化物(SOX)和不可凝性气体,例如氩气,氧气和氮。可以通过传统的选择性催化还原(SCR)和烟气脱硫(FGD)来实现NOX和SOX的去除。然而,这些传统方法导致相对较高的资本成本和能量需求,并且面临复杂的材料处理挑战。怀特等。提出了一种基于硝酸和铅室化学过程的不同的NOX / SOX去除方法(White等,2010)。这种两塔设计采用串联的中间和高压反应吸收塔,分别从高CO2浓度的烟道气中除去SOX和NOX。在这项研究中,我们提出了对此双塔工艺的改进,该工艺可在单塔中实现从CO2物流中完全去除SOX和NOX。我们通过压力敏感性研究证明,通过利用决定NO氧化反应速率的压力依赖性,这种新设计可以在更少的塔级和一半给水量的情况下达到与两塔工艺相同的分离目标。此外,我们利用参数研究来分析NOX / SOX去除对拟议系统的关键设计和运行参数的依赖性:压力,蒸气滞留上段和水流量。结果表明,该过程强烈依赖于压力,当工作压力从4 bar变为30 bar时,所需停留时间减少了3个数量级。蒸气滞留量和给水流速对NOX / SOX的去除有显着影响,最高可达20 m(3)和2 kg / s。超出这些值,色谱柱性能显示出对增加保留量或水流速的敏感性大大降低。本文中的分析还表明,回收塔底液体可以在不显着影响出口气体纯度的情况下将给水需求降低40%。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号