...
首页> 外文期刊>Fuel >Microstructure development of chars derived from high-temperature pyrolysis of barley (Hordeum vulgare L.) hulls
【24h】

Microstructure development of chars derived from high-temperature pyrolysis of barley (Hordeum vulgare L.) hulls

机译:大麦(Hordeum vulgare L.)壳高温热解衍生的炭的微观结构发展

获取原文
获取原文并翻译 | 示例
           

摘要

Fast pyrolysis of biomass is a thermochemical conversion process that provides an economic production of pyrolysis oils/bio-oils. The process also results in a residual solid residue, char, that comprises carbon and mineral ash that can be a potential source of fuel or a valuable co-product. Depending on the exposure time and temperature, pyrolysis can increase the interfacial surface areas of the residual char thereby enhancing its absorptive capacity. Char residues can be used for physical or chemical absorption and as catalyst support or base material for fertilizers. The reactions that occur during char combustion or gasification are heterogeneous hence the reaction rates are microstructure dependent. Ashes from biomass derived chars can be high either in calcium or silica with the latter exceeding 90% levels in certain grain hull residues. Depending on the microstructural transformations which occur during thermal degradation of the biomass, silica-laden ashes can be a potential source of pozzolan for the construction industry. In this study, the microstructure of the chars derived from fast pyrolysis of barley-hull was studied using environmental scanning electron microscopy under low vacuum conditions. The results indicate a gradual increase in convoluted microstructure related to the superficial organization of epidermal cells, including stomata and trichomes that eventually assume the form of various morphotypes of phytoliths. Characterization of the temporal events of high temperature evolution of the hull microstructure provides practical implications of its combustion reactivities and also provides information useful for predicting potential masonry applications for the resulting ash.
机译:生物质的快速热解是一种热化学转化过程,可经济地生产热解油/生物油。该过程还导致残留的固体残渣炭,其中包括碳和矿物灰,可能是潜在的燃料来源或有价值的副产品。取决于暴露时间和温度,热解可以增加残留炭的界面表面积,从而提高其吸收能力。焦炭残留物可用于物理或化学吸收,并用作催化剂载体或肥料的基础材料。在炭燃烧或气化过程中发生的反应是异质的,因此反应速率取决于微观结构。来自生物质焦炭的灰分钙或二氧化硅含量较高,后者在某些谷壳残渣中含量超过90%。根据生物质热降解过程中发生的微观结构转变,负载二氧化硅的灰烬可能是建筑行业火山灰的潜在来源。在这项研究中,使用低真空条件下的环境扫描电子显微镜研究了大麦壳快速热解衍生的焦炭的微观结构。结果表明,与表皮细胞的表面组织有关的回旋微观结构逐渐增加,这些表皮细胞包括气孔和毛状体,它们最终呈现出多种形态特征的植石体。船体微结构高温演变的时间事件的特征提供了其燃烧反应性的实际含义,还提供了有用的信息,可用于预测所产生灰烬的潜在砌体应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号