首页> 外文期刊>Heat transfer >Experimental exergy and entransy analyses on designed and fabricated crossflow heat exchanger
【24h】

Experimental exergy and entransy analyses on designed and fabricated crossflow heat exchanger

机译:设计和制造的交叉流热交换器的实验漏斗和埃塞内西分析

获取原文
获取原文并翻译 | 示例
           

摘要

A crossflow heat exchanger (CFHEx) is designed and fabricated in a workshop. For designing this heat exchanger (HEx), the number of passes, frontal areas, HEx volumes, heat transfer areas, free-flow areas, ratios of minimum free-flow area to frontal area, densities, mass flow rates of flowing fluids, max-imum/minimum heat capacities, heat capacity ratio, outlet temperatures of hot/cold fluids, average tem-peratures, mass velocities, Reynolds numbers, and convective heat transfer coefficients are evaluated by considering Colburn/friction factors. After fabrica-tion of the HEx, effectiveness, exergy destruction, entransy dissipation, entransy dissipation-based thermal resistance, entransy dissipation number, and entransy effectiveness for hot/cold fluids sides are found at different flow rates and inlet tempera-tures of fluids. By experimental results, optimum operating conditions are found, which gives max-imum effectiveness and entransy effectiveness but minimum rates of exergy destruction, entransy dissipation, entransy dissipation-based thermal resistance, and entransy dissipation number for the fabricated CFHEx. This study is concluded as follows: minimum exergy destruction and entransy dissipa-tion rates (ie, 3.061 kJ/s-K and 1125.44 kJ-K/s, re-spectively) are found during experiment 2. Maximum entransy effectiveness of hot/cold fluids (ie, 0.689/ 0.21) is achieved in experiment 1. Moderate values of entransy dissipation number (ie, 4.689), entransy dissipation-based thermal resistance (ie, 0.04s-K/J), exergy destruction (ie, 3.845 kJ/s-K), and entransy dissipation (ie, 1374.04 kJ-K/s) rates are found during experiment 1. Maximum effectiveness (ie, 0.4) for the fabricated HEx is also obtained through experiment 1. After comparative analyses, it is found that ex-periment 1 provides optimum results, which shows the best performance of the fabricated HEx.
机译:在车间中设计和制造了交叉流热交换器(CFHEX)。用于设计该热交换器(六角端),通量,正面区域,十六进制体积,传热区域,自由流量区域,最小自由流量面积的比率,密度,流动流体的质量流量,最大值通过考虑COLBURN /摩擦因子,评估热/冷流体,热/冷流体的出口温度,热/冷流体的出口温度,平均温度,质量速度,雷诺数和对流传热系数。在六角端的纺织物,有效性,漏洞破坏,延伸耗散,延伸耗散的热阻,延伸速度率和流体中的进口温度和进口温度的不同流动率和入口温度下,发现了施力耗散,延伸数,基于延伸数,延伸数量的热阻,延伸耗散数和延伸效能。通过实验结果,找到了最佳的操作条件,其赋予Max-imum有效性和延伸性损失的最小速率,延伸的损耗,基于植入基于促偏的散热性,以及制造的CFHEX的entany耗散数。本研究结束如下:在实验2期间发现了最低漏洞破坏和延伸损坏率(即3.061 kJ / sk和1125.44 kJ-k / s,重新观察)。热/冷液的最大局部煎液效果( IE,0.689 / 0.21)在实验中实现1.延伸偏移数(即4.689),基于延伸的辐射的热阻(即0.04sk / j),突破(即3.845 kJ / sk),在实验期间发现了Entransy耗散(即,1374.04 kJ-k / s)速率1.通过实验1获得制造的十六进制的最大效果(即0.4)。在比较分析后,发现ex-periment 1提供最佳效果,显示了制造的十六进制的最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号