...
首页> 外文期刊>Heat transfer >Mixed convection flows of tangent hyperbolic fluid past an isothermal wedge with entropy: A mathematical study
【24h】

Mixed convection flows of tangent hyperbolic fluid past an isothermal wedge with entropy: A mathematical study

机译:切线双曲流体的混合对流流过熵的等温楔数:数学研究

获取原文
获取原文并翻译 | 示例
           

摘要

The nonlinear, steady, and mixed convective boundary layer flow and heat transfer of an incompressible tangent hyperbolic non-Newtonian fluid over an isothermal wedge in the presence of magnetic field are analyzed numerically using the implicit Keller-Box finite-difference technique. The entropy analysis due to MHD flow of a tangent hyperbolic fluid past an isothermal wedge and viscous dissipation is also included. The numerical code is validated with previous Newtonian studies available in the literature. Graphical and tabulated results are analyzed to study the behavior of the fluid velocity, temperature, concentration, shear stress, heat transfer rate, entropy generation number, and Bejan number for various emerging thermophysical parameters, namely Weis-senberg number (We), power-law index (n), mixed convection parameter (λ), pressure gradient parameter (m), Prandtl number (Pr), Biot number (γ), Hartmann number (Ha), Brinkmann number (Br), Reynolds number (Re), and temperature gradient (Π). It is observed that velocity, entropy, Bejan number, and surface heat transfer rate are reduced with the increase in the Weissenberg number, but temperature and local skin friction are increased. An increase in pressure gradient enhances velocity, entropy, local skin friction, and surface heat transfer rate, but reduces temperature and Bejan number. An increase in an isothermal power-law index (n) is observed to increase velocity, Bejan number, and surface heat transfer rate, but it decreases temperature, entropy, and local skin friction. An increase in the magnetic parameter (Ha) is found to decrease temperature, entropy, surface heat transfer rate, and local skin friction, and it increases velocity and Bejan number. The research is applicable for coating materials in chemical engineering, for instance, robust paints, production of aerosol deposition, and water-soluble solution thermal treatment.
机译:使用隐式凯勒盒有限差分技术在数值上进行数值在数值上分析在存在磁场的等温楔上的不可压缩切线双曲非牛顿流体的非线性,稳态和混合的对流边界层流动和传热。还包括由于切线双曲流流体的MHD流量而导致的熵分析。数字代码与文献中可用的以前的牛顿研究验证。分析图形和制表结果以研究各种新出现的热神族参数的流体速度,温度,浓度,剪切应力,传热速率,熵生成数,传热速率,熵生成数和BEJAN编号的行为,即Weis-Senberg号(我们),电力 - 法律指数(n),混合对流参数(λ),压力梯度参数(m),prandtl号(pr),Biot编号(γ),Hartmann号(HA),Brinkmann号(Br),雷诺数(RE),和温度梯度(π)。观察到,随着Weissenberg数的增加,速度,熵,Bejan号和表面传热率降低,但温度和局部皮肤摩擦增加。压力梯度的增加提高了速度,熵,局部皮肤摩擦和表面传热速率,但减少了温度和BEJAN数。观察到等温幂律指数(N)的增加以增加速度,BEJAN数和表面传热速率,但它会降低温度,熵和局部皮肤摩擦。发现磁性参数(HA)的增加来降低温度,熵,表面传热速率和局部皮肤摩擦,并且增加速度和BEJAN数。该研究适用于化学工程中的涂层材料,例如,鲁棒涂料,气溶胶沉积的生产和水溶性溶液热处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号