首页> 外文期刊>IEEE Transactions on Information Theory >Sparse Combinatorial Group Testing
【24h】

Sparse Combinatorial Group Testing

机译:稀疏组合组测试

获取原文
获取原文并翻译 | 示例
           

摘要

In combinatorial group testing, the primary objective is to fully identify the set of at most d defective items from a pool of n items using as few tests as possible. The celebrated result for the combinatorial group testing problem is that the number of tests, denoted by t , can be made logarithmic in n when {d} = {O}(ext {poly}(log {n})) . However, state-of-the-art group testing codes require the items to be tested {w} = Omega left ({rac {{d} log {n}}{log {d} + log log {n}} }ight) times and tests to include ho = Omega left ({rac {{n}}{{d} log _{{d}} {n}}}ight) items. In many emerging applications, items can only participate in a limited number of tests and tests are constrained to include a limited number of items. In this paper, we study the "sparse" regime for the group testing problem where we restrict the number of tests each item can participate in by {w}_{max } or the number of items each test can include by ho _{max } in both noiseless and noisy settings. These constraints lead to a largely unexplored regime where t is a fractional power of n, rather than logarithmic in n as in the classical setting. Our results characterize the number of tests t needed in this regime as a function of {w}_{max } or ho _{max } and show, for example, that t decreases drastically when {w}_{max } is increased beyond a bare minimum. In particular, in the noiseless case it can be shown that if {w}_{max } leq {d} , then we must have {t}={n} , i.e., testing every item individually is optimal. We show that if {w}_{max }={d}+1 , the number of tests decreases suddenly from {t}={n} to {t} = Theta ({d} sqrt {{n}}) . The order-optimal construction is obtained via a modification of the classical Kautz-Singleton construction, which is known to be suboptimal for the classical group testing problem. For the more general case, when {w}_{max }={{ ld}}+1 for integer {l}>1 , the modified Kautz-Singleton construction requires {t} = Theta left ({{d} {n}<^>{rac {1}{{l}+1}}}ight) tests, which we prove to be near order-optimal. We also show that our constructions have a favorable encoding and decoding complexity, i.e. they can be decoded in ({poly}({d}) + {O}({t})) -time and each entry in any codeword can be computed in {poly}(log {n}) memory space. We finally discuss an application of our results to the construction of energy-limited random access schemes for Internet of Things networks, which provided the initial motivation for our work.
机译:在组合组测试中,主要目标是通过尽可能少的测试完全识别来自N个项目的池中的最多D缺陷物品。组合组测试问题的庆祝结果是,由T表示的测试数量,当{d} = {o}( text {poly}( log {n}))时,可以在n中进行对数。但是,最先进的组测试代码要求测试的项目{w} = oomega left({ frac {{d} log {n}} { log {d} + log 对{n}}} 右)次数和测试包括 rho = ω left({ frac {{n}} {{d} log _ {{d}} {n}} 右)项目。在许多新兴应用程序中,物品只能参与有限数量的测试,并且测试被限制为包括有限数量的项目。在本文中,我们研究了组测试问题的“稀疏”制度,其中我们限制了每个项目的测试数量可以参与{w} _ { max}或每个测试可以包括 rho _的项目数{ max}在无噪声和嘈杂的设置中。这些约束导致主要是未探测的制度,其中T是n的分数力,而不是在经典设置中的n中的对数。我们的结果表征了该制度中所需的测试T的数量,作为{w} _ { max}或 rho _ { max}的函数,并且例如,当{w} _ { max时,t急剧下降}超出了最小的最小值。特别地,在无噪声的情况下,可以示出,如果{w} _ { max} leq {d},则必须具有{t} = {n},即,单独测试每个项目是最佳的。我们表明,如果{w} _ { max} = {d} +1,则测试的数量突然从{t} = {n}突然减小到{t} = theta({d} sqrt {{n} })。通过修改经典的Kautz-Singleton结构来获得订单最优结构,这已知是经典群体测试问题的次优。对于更常规的情况,当整数{l}> 1的{w} _ { max} = {{ld}} + 1时,修改后的kautz-singleton构造需要{t} = theta left({{d {n} <^> { frac {1} {{l} +1}} 右)测试,我们证明是靠近订单的最佳状态。我们还表明,我们的结构具有良好的编码和解码复杂性,即它们可以在({poly}({d})+ {o}({t}))中解码 - 可以计算任何码字中的每个条目在{poly}( log {n})内存空间。我们终于讨论了我们的结果,以建造了用于网络网络网络的能量有限的随机接入方案,为我们的工作提供了初始动机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号