首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Phased Array Imaging of Complex-Geometry Composite Components
【24h】

Phased Array Imaging of Complex-Geometry Composite Components

机译:复杂几何形状复合组件的相控阵成像

获取原文
获取原文并翻译 | 示例
           

摘要

Progress in computational fluid dynamics and the availability of new composite materials are driving major advances in the design of aerospace engine components which now have highly complex geometries optimized to maximize system performance. However, shape complexity poses significant challenges to traditional nondestructive evaluation methods whose sensitivity and selectivity rapidly decrease as surface curvature increases. In addition, new aerospace materials typically exhibit an intricate microstructure that further complicates the inspection. In this context, an attractive solution is offered by combining ultrasonic phased array (PA) technology with immersion testing. Here, the water column formed between the complex surface of the component and the flat face of a linear or matrix array probe ensures ideal acoustic coupling between the array and the component as the probe is continuously scanned to form a volumetric rendering of the part. While the immersion configuration is desirable for practical testing, the interpretation of the measured ultrasonic signals for image formation is complicated by reflection and refraction effects that occur at the water-component interface. To account for refraction, the geometry of the interface must first be reconstructed from the reflected signals and subsequently used to compute suitable delay laws to focus inside the component. These calculations are based on ray theory and can be computationally intensive. Moreover, strong reflections from the interface can lead to a thick dead zone beneath the surface of the component which limits sensitivity to shallow subsurface defects. This paper presents a general approach that combines advanced computing for rapid ray tracing in anisotropic media with a 256-channel parallel array architecture. The full-volume inspection of complex-shape components is enabled through the combination of both reflected and transmitted signals through the part using a pair of arrays held in a yoke configuration. Experimental results are provided for specimens of increasing complexity relevant to aerospace applications such as fan blades. It is shown that PA technology can provide a robust solution to detect a variety of defects including porosity and waviness in composite parts.
机译:计算流体动力学的进步和新型复合材料的可用性正在推动航空航天发动机部件设计的重大进展,这些部件目前具有高度复杂的几何形状,这些几何形状已优化以最大化系统性能。但是,形状复杂性给传统的非破坏性评估方法带来了重大挑战,传统的非破坏性评估方法的灵敏度和选择性随着表面曲率的增加而迅速降低。另外,新的航空航天材料通常表现出复杂的微观结构,这使检查更加复杂。在这种情况下,通过将超声相控阵(PA)技术与浸入测试相结合,可以提供一种有吸引力的解决方案。在此,在零件的复杂表面与线性或矩阵阵列探针的平面之间形成的水柱可确保在连续扫描探针以形成零件的体积渲染时,在阵列与零件之间实现理想的声耦合。虽然浸入配置对于实际测试是理想的,但是由于在水-组分界面处发生的反射和折射效应,对用于图像形成的测量超声波信号的解释变得复杂。为了解决折射问题,必须首先从反射信号中重建界面的几何形状,然后将其用于计算合适的延迟定律,以聚焦在组件内部。这些计算基于射线理论,并且可能需要大量计算。而且,界面的强烈反射会导致部件表面下方的死区变厚,从而限制了对浅层次表面缺陷的敏感性。本文提出了一种通用方法,该方法结合了先进的计算能力和256通道并行阵列架构,可用于各向异性介质中的快速射线追踪。复杂形状组件的全面检查是通过使用保持在轭形结构中的一对阵列将通过零件的反射信号和透射信号进行组合来实现的。为与航空航天应用(例如风扇叶片)相关的复杂性不断增加的标本提供了实验结果。结果表明,PA技术可以提供强大的解决方案来检测各种缺陷,包括复合零件中的孔隙率和波纹度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号