首页> 外文期刊>International Journal of Heat and Fluid Flow >Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles
【24h】

Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles

机译:有限尺寸球形颗粒在层流和湍流管内传热的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

Controlling heat and mass transfer in particulate suspensions has many applications in fuel combustion, food industry, pollution control and life science. We perform direct numerical simulations (DNS) to study the heat transfer within a suspension of neutrally buoyant, finite-size spherical particles in laminar and turbulent pipe flows, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve the temperature equation both inside and outside the particles. Particle volume fractions up to 40% are simulated for different pipe to particle diameter ratios. We show that a considerable heat transfer enhancement (up to 330%) can be achieved in the laminar regime by adding spherical particles. The heat transfer is observed to increase significantly as the pipe to particle diameter ratio decreases for the parameter range considered here. Larger particles are found to have a greater impact on the heat transfer enhancement than on the wall-drag increase. In the turbulent regime, however, only a transient increase in the heat transfer is observed and the process decelerates in time below the values in single-phase flows as high volume fractions of particles laminarize the core region of the pipe. A heat transfer enhancement, measured with respect to the single phase flow, is only achieved at volume fractions as low as 5% in a turbulent flow.
机译:控制颗粒悬浮液中的传热和传质在燃料燃烧,食品工业,污染控制和生命科学中有许多应用。我们使用浸没边界法(IBM)进行直接数值模拟(DNS),以研究层流和湍流管道中的中性浮力,有限尺寸球形颗粒的悬浮液中的热传递,并使用固体边界方法(IBM)来说明固体流体的相互作用和体积(VoF)方法求解粒子内部和外部的温度方程。针对不同的管道与粒径的比率,模拟了高达40%的粒子体积分数。我们表明,通过添加球形颗粒,在层流状态下可以实现显着的传热增强(高达330%)。在此处考虑的参数范围内,随着管径比的减小,传热会显着增加。发现较大的颗粒对热传递增强的影响大于对壁阻力的增大的影响。然而,在湍流状态下,仅观察到传热的瞬时增加,并且随着时间的流逝,随着高体积分数的颗粒层状化管道的核心区域,该过程在单相流以下的时间减速。相对于单相流测量的传热增强仅在湍流中的体积分数低至5%的情况下才能实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号