首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge
【24h】

Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge

机译:涡轮叶片前缘涡流和冲击复合冷却结构流动和传热的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, four swirl and impingement composite cooling structures are established to deeply study the flow and heat transfer characteristics, where the swirl nozzles and impingement nozzles are reasonably arranged. Numerical simulation is conducted by solving the Reynolds Averaged Navier-Stokes (RANS) equations with the standard k-omega model. Meanwhile, numerical results are compared with the cooling behaviors of swirl cooling and impingement cooling under the same condition. Results revealed that the pressure distribution of four composite cooling structures is quite different from that of swirl cooling and impingement cooling. Hence, the nozzle mass flow ratio distribution of composite cooling structures displays a large fluctuation with the variation of the nozzle location, which has an influence on the flow and heat transfer characteristics. Moreover, the heat transfer characteristics of swirl and impingement composite cooling combine the advantages of impingement cooling and swirl cooling, where there both exists extremely high local heat transfer regions and uniform heat transfer regions. As for composite cooling 3 and composite cooling 4, the alternate locations of impingement nozzles and swirl nozzles could effectively increase the band-shaped high heat transfer area. Meanwhile, the low heat transfer area caused by the continuous arrangement of impingement nozzles is reduced. Among four composite cooling structures, the composite cooling 4 has the highest average heat transfer coefficient and the minimum pressure loss. The globally average heat transfer of composite cooling 4 is 3.49% lower than swirl cooling but is 19.12% higher than impingement cooling. Its total pressure loss is 4.29% lower than swirl cooling and is slightly lower compared with impingement cooling. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文建立了四个旋流和冲击复合冷却结构,以深入研究流动和传热特性,合理地布置了旋流喷嘴和冲击喷嘴。通过使用标准k-ω模型求解雷诺平均Navier-Stokes(RANS)方程进行数值模拟。同时,将数值结果与相同条件下的旋流冷却和冲击冷却的冷却行为进行了比较。结果表明,四种复合冷却结构的压力分布与旋流冷却和冲击冷却的压力分布有很大不同。因此,复合冷却结构的喷嘴质量流量比分布随着喷嘴位置的变化而显示出较大的波动,这对流动和传热特性具有影响。而且,涡流和冲击复合冷却的传热特性结合了冲击冷却和涡流冷却的优点,其中都存在极高的局部传热区域和均匀的传热区域。对于复合冷却器3和复合冷却器4,冲击喷嘴和旋流喷嘴的交替位置可以有效地增加带状的高传热面积。同时,减小了由连续布置的冲击喷嘴引起的低传热面积。在四个复合冷却结构中,复合冷却4具有最高的平均传热系数和最小的压力损失。复合冷却系统4的全球平均传热比涡旋冷却系统低3.49%,但比冲击冷却系统高19.12%。它的总压力损失比旋流冷却低4.29%,与冲击冷却相比略低。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号