首页> 外文期刊>International Journal of Heat and Mass Transfer >Direct numerical simulation of convective heat transfer in a pipe with transverse vibration
【24h】

Direct numerical simulation of convective heat transfer in a pipe with transverse vibration

机译:具有横向振动的管道对流热传递的直接数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A series of direct numerical simulations is conducted to investigate the convection in a pipe with transverse vibration aiming at the heat transfer enhancement in a catalytic converter. Assuming that the turbulent inflow enters a thin tube of the honeycomb converter, friction Reynolds number which is defined by the friction velocity and the pipe radius is set to be 60 with the initial condition of the fully developed turbulent field of higher Reynolds number. The parameters of vibration control are amplitude η* and frequency f*. For a case of (2η*, f*) = (1.6, 0.4), the Nusselt number periodically increases and decreases in time to achieve 70% augmentation on average as compared to the uncontrolled case. It can be observed through visualization of the flow field that twin vortices play a dominant role in enhancing the heat transfer. High-temperature fluid is transported by the twin vortices toward the pipe wall in the vibration direction to increase the Nusselt number there. However, after the breakdown of the twin vortices, the high-temperature fluid remains at the center of the pipe and the effect of heat transfer enhancement is suppressed. It is also confirmed from a parametric study that the velocity amplitude of the induced vibration is an important parameter for heat transfer enhancement.
机译:进行了一系列直接数值模拟,以研究具有横向振动的管道中的对流,旨在催化转化器中的传热增强。假设湍流流入进入蜂窝转换器的薄管,由摩擦速度和管道半径限定的摩擦雷诺数被设定为60,其初始条件是较高雷诺数的完全发育的湍流场。振动控制的参数是幅度η*和频率f *。对于(2n *,f *)=(1.6,0.4)的情况,与不受控制的情况相比,纽带数周期性地增加和减少,以平均实现70%的增强。通过对双涡旋的可视化可以观察到Twin Vortices在增强传热方面发挥主导作用的流场。高温流体通过双涡流向振动方向朝向管壁运输,以增加那里的营养数。然而,在双涡流的击穿之后,高温流体保留在管道的中心,并且抑制了传热增强的效果。还从参数研究中确认,诱导振动的速度幅度是用于传热增强的重要参数。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2020年第2期|119048.1-119048.11|共11页
  • 作者单位

    Tokyo University of Agriculture and Technology Nakacho 2-24-16 Koganei Tokyo 184-8588 Japan;

    Tokyo University of Agriculture and Technology Nakacho 2-24-16 Koganei Tokyo 184-8588 Japan;

    Tokyo University of Agriculture and Technology Nakacho 2-24-16 Koganei Tokyo 184-8588 Japan;

    Tokyo University of Agriculture and Technology Nakacho 2-24-16 Koganei Tokyo 184-8588 Japan;

    Tokyo University of Agriculture and Technology Nakacho 2-24-16 Koganei Tokyo 184-8588 Japan;

    The University of Electro-Communications Chofugaoka 1-5-1 Chofu Tokyo 182-8585 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号