首页> 外文期刊>International Journal of Heat and Mass Transfer >Heat transfer during drop impingement onto a hot wall: The influence of wall superheat, impact velocity, and drop diameter
【24h】

Heat transfer during drop impingement onto a hot wall: The influence of wall superheat, impact velocity, and drop diameter

机译:在滴落在热墙上的滴落过程中的热传递:壁过热,冲击速度和下降直径的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The present work addresses the influence of the wall superheat, drop impact velocity, and impact diameter on hydrodynamics, heat transport, and evaporation during drop impingement onto a heated solid wall in a pure vapor atmosphere. A generic experimental setup has been designed and built with a temperature-controlled cell that allows investigation of drop impingement in a pure vapor atmosphere. Therein a single drop is generated and falls onto a heated surface due to gravity. The experiments are conducted with refrigerant FC-72. The heated surface is formed by a thin metallic layer coated onto an infrared transparent glass, so that the temperature field of the solid-fluid interface can be observed from below with an infrared camera at high spatial and temporal resolution. The heat flux field is derived from the temperature field using a dedicated post-processing procedure. The dynamic evolution of contact line radius is derived using image analysis. The drop shape is observed with a high speed camera, which is synchronized with the infrared camera. Experimental and numerical results for contact line radius and heat flow evolution are compared with each other. This gives an insight to the governing heat transport mechanism during different phases of drop impingement. Experimental and numerical parameter studies reveal that higher wall superheats, higher impact velocities, or larger drop diameters each result in increasing heat flow after the impact. The maximum spreading radius after impingement is increasing with rising impact velocity or impact diameter, and decreasing with rising wall superheat.
机译:本工作解决了壁过热,下降冲击速度和冲击直径对流体动力学,热传输和蒸发过程中的影响,在纯蒸气气氛中的加热固体壁上的滴水动力学,热传输和蒸发过程中。通过温度控制的电池设计和构建了通用实验设置,允许在纯蒸汽气氛中调查液滴冲击。在其中产生单个液滴并落在引起的加热表面上。实验用制冷剂Fc-72进行。加热表面由涂覆在红外透明玻璃上的薄金属层形成,使得可以在高空间和时间分辨率下从下面与红外相机观察固体流体接口的温度场。热通量场使用专用后处理程序从温度场得出。使用图像分析导出接触线半径的动态演变。用高速摄像头观察到滴形,其与红外相机同步。相互比较接触线半径和热流演化的实验和数值结果。这对不同阶段的滴冲击阶段进行了深入了解。实验性和数值参数研究表明,较高的壁过热,更高的冲击速度或更大的下降直径,每次导致冲击后的热流增加。冲击后的最大散射半径随着冲击速度或抗冲击直径上升,并且随着壁过热的升高而降低。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2020年第6期|119661.1-119661.11|共11页
  • 作者单位

    Institute of Technical Thermodynamics Technische Universitaet Darmstadt Alarich-Weiss-Strasse 10 Darmstadt 64287 Germany;

    Institute of Technical Thermodynamics Technische Universitaet Darmstadt Alarich-Weiss-Strasse 10 Darmstadt 64287 Germany;

    Institute of Technical Thermodynamics Technische Universitaet Darmstadt Alarich-Weiss-Strasse 10 Darmstadt 64287 Germany;

    Institute of Technical Thermodynamics Technische Universitaet Darmstadt Alarich-Weiss-Strasse 10 Darmstadt 64287 Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Drop impingement; Drop evaporation; Spreading radius; Heat transfer;

    机译:爆发;降蒸发;传播半径;传播热量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号