首页> 外文期刊>International Journal of Heat and Mass Transfer >Flow boiling of HFE-7100 in silicon microchannels integrated with multiple micro-nozzles and reentry micro-cavities
【24h】

Flow boiling of HFE-7100 in silicon microchannels integrated with multiple micro-nozzles and reentry micro-cavities

机译:HFE-7100在带有多个微喷嘴和折返微腔的硅微通道中的流沸腾

获取原文
获取原文并翻译 | 示例
           

摘要

Flow boiling of dielectric fluids in microchannels is one of the most desirable cooling solutions for high power electronics. However, the flow boiling of dielectric fluids is hindered by their unfavorable thermophysical properties. Specifically, without precooling dielectric fluids, it is challenging to promote critical heat flux (CHF) due to its high vapor density, low surface tension and the resulted superior wettability. In this study, each side wall of a five-parallel silicon microchannel array was structured with an array of microscale reentry cavities and four micronozzles bypassed by an auxiliary channel. The present microchannel configuration aims to significantly enhance CHF of HFE-7100 flow boiling by improving global liquid supply using auxiliary channels and micrononozzles as well as by sustaining liquid film using capillarity induced by reentry cavity array. Equally important, these structures can promote nucleate boiling at low heat flux, generate intense mixing, and promote thin film evaporation at high heat flux, resulting in high flow boiling heat transfer rate. Flow boiling of HFE-7100 in the present microchannel configuration is characterized with mass flux ranging from 231 kg/m(2) s to 1155 kg/m(2)s. The effective two-phase heat transfer coefficients (HTCs) are ranging from 6 kW/m(2) K to 117 kW/m(2) K. Compared to the four-nozzle plain-wall microchannels, for example, the effective HTC and CHF can be substantially enhanced up to 208% and 37%, respectively, without escalating pressure drop at a mass flux of 462kg/m(2) s. Compared to plain microchannels with inlet restrictors, CHF is considerably enhanced up to 70% with a reduction of pressure drop similar to 82% at a mass flux of 1155 kg/m(2) s. Significantly reduced pressure drop is achieved by integrating bypass and the enhanced confined bubble removal. A peak CHF value of 216 W/cm(2) is achieved at mass flux of 2772 kg/m(2) s in the present microchannel configuration with inlet temperature at room temperature. (C) 2018 Elsevier Ltd. All rights reserved.
机译:微通道中介电液的流动沸腾是高功率电子设备最理想的冷却解决方案之一。然而,介电流体的沸腾沸腾由于其不利的热物理性质而受到阻碍。特别是,在没有预冷介电液的情况下,提高临界热通量(CHF)是一项挑战,因为它的高蒸气密度,低表面张力和出色的润湿性。在这项研究中,五个平行的硅微通道阵列的每个侧壁都由一个微尺度的再入腔阵列和四个由辅助通道绕过的微喷嘴构成。本微通道配置旨在通过使用辅助通道和微喷嘴改善整体液体供应,以及通过利用由再进入腔阵列引起的毛细作用维持液膜来显着提高HFE-7100流动沸腾的CHF。同样重要的是,这些结构可以在低热通量下促进成核沸腾,产生强烈的混合,并在高热通量下促进薄膜蒸发,从而导致高流动沸腾传热速率。在当前的微通道配置中,HFE-7100的流沸腾特征在于质量流量范围为231 kg / m(2)s至1155 kg / m(2)s。有效的两相传热系数(HTC)介于6 kW / m(2)K到117 kW / m(2)K之间。例如,与四喷嘴平壁微通道相比,有效HTC和在质量流量为462kg / m(2)s的情况下,CHF可以显着提高到分别为208%和37%,而不会导致压降增大。与带入口限流器的普通微通道相比,CHF在1155 kg / m(2)s的质量通量下,压降降低了约82%,大大提高了70%。通过集成旁路和增强的受限气泡去除功能,可以大大降低压降。在当前入口温度为室温的微通道配置中,在2772 kg / m(2)s的质量通量下,CHF峰值达到216 W / cm(2)。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号