首页> 外文期刊>International Journal of Heat and Mass Transfer >The decoupling and synergy strategy to construct multiscales from nano to millimeter for heat pipe
【24h】

The decoupling and synergy strategy to construct multiscales from nano to millimeter for heat pipe

机译:用于热管从纳米到毫米构建多尺度的去耦和协同策略

获取原文
获取原文并翻译 | 示例
           

摘要

We decouple a heat pipe into capillary pressure, flow resistance, condensation heat transfer, and assign specific length scale to adapt each function. We verify the synergy of various length scales to activate various functions. The strategy guides multiscale design to realize an enhancement of capillary pressure, a well management of flow resistance and an ultra-thin liquid thickness on condenser surface. The porous wick consists of a particle sub-layer and 3D mastoid process array. The tips of mastoid process directly contact the condenser wall. Four vapor chambers are formed by sintering d_m = 73.8 μm without oxidation (#1), with oxidation (#2), d_m -556nm without oxidation (#3) and with oxidation (#4), respectively. Liquid suction and heat transfer experiments were performed. Four types of evaporator temperatures versus inclination angles were observed. Small difference is found between bottom and top heating modes. The multiscale wick influences the vapor-liquid phase distribution to cause the difference between side and other heating modes. The d_m = 73.8 μm particle sintering with nano-roughness successfully balance various conflicts among capillary pressure, vapor-liquid interface area, flow resistance and liquid removal from the condenser surface. Nano-roughness increases the vapor-liquid interface area to have 3-4 times of evaporation heat transfer coefficients compared with smooth particle surface. Nano-roughness increases the wettability to capture liquid from condenser, having ~18 times of condensation heat transfer coefficients to those without nano-roughness. The d_m = 556 nm particle sintering and nano-roughness are the poor match for heat pipes. This paper gives a clue to construct multiscale wicks for heat pipes and ensures better performance at varied gravity such as micro-gravity environment.
机译:我们将热管解耦为毛细管压力,流阻,冷凝热传递,并指定特定的长度比例以适应每种功能。我们验证了各种长度尺度的协同作用,以激活各种功能。该策略指导多尺度设计,以实现毛细管压力的增强,流阻的良好管理以及冷凝器表面的超薄液体厚度。多孔芯由粒子子层和3D乳突工艺阵列组成。乳突过程的尖端直接接触冷凝器壁。分别通过烧结d_m = 73.8μm(无氧化(#1),有氧化(#2),无氧化(d3)和d_m -556nm(#3)和有氧化(#4))形成四个蒸气室。进行了吸液和传热实验。观察到四种类型的蒸发器温度与倾角的关系。底部和顶部加热模式之间的差异很小。多尺度灯芯会影响汽液相分布,从而导致侧加热模式与其他加热模式之间产生差异。具有纳米粗糙度的d_m = 73.8μm颗粒烧结成功地平衡了毛细管压力,气液界面面积,流动阻力和从冷凝器表面去除液体之间的各种冲突。与光滑的颗粒表面相比,纳米粗糙度增加了气液界面面积,具有3-4倍的蒸发传热系数。纳米粗糙度提高了从冷凝器捕获液体的润湿性,其冷凝传热系数是无纳米粗糙度的凝结传热系数的18倍。 d_m = 556 nm的颗粒烧结和纳米粗糙度与热管不匹配。本文为构造热管用多尺度灯芯提供了线索,并确保了在不同重力(例如微重力环境)下的更好性能。

著录项

  • 来源
  • 作者单位

    The Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, PR China;

    The Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, PR China;

    The Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, PR China;

    CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Heat pipe; Multiscale; Evaporation; Condensation; Decoupling and synergy;

    机译:热管;多尺度蒸发;缩合;解耦和协同作用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号