首页> 外文期刊>International Journal of Heat and Mass Transfer >A self-consistent kinetic model for droplet heating and evaporation
【24h】

A self-consistent kinetic model for droplet heating and evaporation

机译:液滴加热和蒸发的自洽动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

A new kinetic model for heating and evaporation of Diesel fuel droplets is suggested. The model is based on the introduction of the kinetic region in the immediate vicinity of the heated and evaporating droplets, where the dynamics of molecules are described in terms of the Boltzmann equations for vapour components and air, and the hydrodynamic region. The effects of finite thermal conductivity and species diffu-sivity inside the droplets and inelastic collisions in the kinetic region are taken into account. Diesel fuel is approximated by n-dodecane or a mixture of 80% n-dodecane and 20% p-dipropylbenzene. In both cases, the evaporation coefficient is assumed equal to 1. The values of temperature and vapour density at the outer boundary of the kinetic region are inferred from the requirement that both heat flux and mass flux of vapour (or vapour components) in the kinetic and hydrodynamic regions in the vicinity of the interface between these regions should be equal. Initially, the heat and mass fluxes in the hydrodynamic region are calculated based on the values of temperature and vapour density at the surface of the droplet. Then the values of temperature and vapour density at the outer boundary of the kinetic region, obtained following the above-mentioned procedure, are used to calculate the corrected values of hydrodynamic heat and mass fluxes. The latter in their turn lead to new corrected values of temperature and vapour density at the outer boundary of the kinetic region etc. It is shown that this process quickly converges for the cases analysed in the paper, and it leads to self-consistent values for both heat and mass fluxes. The model is applied to the analysis of heating and evaporation of Diesel fuel droplets with initial radii and temperature equal to 5 urn and 300 K, immersed into gas with temperatures in the range 800-1200 K and pressure equal to 30 bar. It is shown that in all cases the kinetic effects lead to a decrease in droplet surface temperature and an increase in the evaporation time. The kinetic effects on the droplet evaporation time are shown to increase with increasing gas temperatures.
机译:提出了一种新的加热和蒸发柴油燃料液滴的动力学模型。该模型基于加热和蒸发的液滴附近的动力学区域的引入,其中分子的动力学是根据有关蒸汽成分和空气的Boltzmann方程以及流体动力学区域来描述的。考虑了液滴内部有限的热导率和物质扩散率以及动力学区域中非弹性碰撞的影响。柴油近似为正十二烷或80%正十二烷和20%对二丙基苯的混合物。在这两种情况下,均假设蒸发系数等于1。从动力学区域中的蒸汽(或蒸汽成分)的热通量和质量通量的要求出发,可以得出动力学区域外边界处的温度和蒸汽密度的值。这些区域之间的界面附近的流体动力区域应相等。最初,基于液滴表面的温度和蒸汽密度值计算流体力学区域中的热通量和质量通量。然后,按照上述步骤获得的动力学区域外边界处的温度和蒸汽密度值将用于计算流体动力热通量和质量通量的校正值。后者反过来导致在动力学区域等的外部边界处的温度和蒸气密度的新校正值。表明,对于本文中分析的情况,该过程快速收敛,并且导致了自洽值。热通量和质量通量该模型适用于分析初始半径和温度等于5 urn和300 K的柴油燃料滴的加热和蒸发,并将其浸入温度范围在800-1200 K和压力等于30 bar的气体中。结果表明,在所有情况下,动力学效应都会导致液滴表面温度降低和蒸发时间增加。已显示出对液滴蒸发时间的动力学影响随着气体温度的升高而增加。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2016年第2期|1206-1217|共12页
  • 作者单位

    Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK;

    Low Temperature Department, Moscow Power Engineering Institute, Krasnokazarmennaya 14, Moscow 111250, Russia,Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK;

    Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK,School of Mechanical, Aerospace and Automotive Engineering, Coventry University, Coventry CV1 2JH, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Boltzmann equation; Diesel fuel droplet; n-dodecane; p-dipropylbenzene; Heat/mass transfer; Kinetic effects;

    机译:玻尔兹曼方程柴油滴正十二烷;对二丙基苯;热/质量传递;动力学效应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号