首页> 外文期刊>International Journal of Heat and Mass Transfer >The effect of fuel utilization on heat and mass transfer within solid oxide fuel cells examined by three-dimensional numerical simulations
【24h】

The effect of fuel utilization on heat and mass transfer within solid oxide fuel cells examined by three-dimensional numerical simulations

机译:三维数值模拟研究了燃料利用率对固体氧化物燃料电池内传热和传质的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The thermo-fluid reacting environment and local thermodynamic state in solid oxide fuel cell (SOFC) stacks were examined by using three-dimensional numerical simulations. Enhancing the performance and durability of the SOFC stacks is essential when a high fuel utilization scheme is implemented to increase the system efficiency and lower system operating costs. In this study, numerical simulations were conducted to elucidate the effect of fuel utilization on heat and mass transfer as the fuel utilization is raised. A high-fidelity three-dimensional physical model was developed incorporating elementary electrochemical reaction kinetics by assuming rate-limiting steps and spatially-resolved conservation equations. The model considers planar anode-supported SOFC stacks and is validated against their electrochemical performance experimentally measured. A parametric study with respect to fuel utilization was conducted by varying a fuel flow rate while maintaining other operating conditions constant. Results show that, when increasing the fuel utilization, a narrow and non-uniform electrochemical reaction zone is observed near the fuel inlet, resulting in substantial depletion of hydrogen in the downstream fuel flow and thus raising the partial pressure of oxygen in the anode. This subsequently lowers the electrochemical potential gradient across the electrolyte and hence induces a large gradient of ionic current density along the cell. Convective flow through porous electrodes also results in pressure gradients in the direction of both cell thickness and length. In addition, the heat balance between conduction through metallic interconnects, convection by gases and the heat generated from charged-species transport and electrochemical reactions determines a temperature gradient along the cell and its maximum location. All of these gradients may induce chemical, mechanical and thermal stresses on SOFC materials and corresponding degradation.
机译:固体氧化物燃料电池(SOFC)堆中的热流体反应环境和局部热力学状态通过三维数值模拟进行了检查。当实施高燃料利用率方案以提高系统效率和降低系统运营成本时,提高SOFC烟囱的性能和耐久性至关重要。在这项研究中,进行了数值模拟,以阐明随着燃料利用率的提高,燃料利用率对传热和传质的影响。通过假设限速步骤和空间分辨的守恒方程,开发了包含基本电化学反应动力学的高保真三维物理模型。该模型考虑了平面阳极支撑的SOFC堆,并通过实验测量的电化学性能进行了验证。通过改变燃料流量,同时保持其他工况不变,进行了有关燃料利用率的参数研究。结果表明,当增加燃料利用率时,在燃料入口附近观察到狭窄且不均匀的电化学反应区,从而导致下游燃料流中的氢气大量消耗,从而提高了阳极中氧气的分压。随后,这降低了跨电解质的电化学电势梯度,并因此引起了沿电池的离子电流密度的大梯度。通过多孔电极的对流还导致沿电池厚度和长度方向的压力梯度。此外,通过金属互连的传导,气体的对流以及带电物质的传输和电化学反应产生的热量之间的热平衡决定了沿电池及其最大位置的温度梯度。所有这些梯度都可能在SOFC材料上引起化学,机械和热应力以及相应的降解。

著录项

  • 来源
  • 作者单位

    High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea,Department of Mechanical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea;

    High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea;

    High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea;

    High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea;

    High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea;

    High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea;

    Department of Mechanical Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea;

    High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solid oxide fuel cell; Modeling; Numerical simulation; Fuel utilization; Degradation;

    机译:固体氧化物燃料电池;造型;数值模拟燃料利用率;降解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号