...
首页> 外文期刊>International journal of hydrogen energy >A multi-scale flow analysis in hydrogen separation membranes using a coupled DSMC-SPH method
【24h】

A multi-scale flow analysis in hydrogen separation membranes using a coupled DSMC-SPH method

机译:使用DSMC-SPH耦合方法在氢分离膜中进行多尺度流动分析

获取原文
获取原文并翻译 | 示例
           

摘要

The membrane separation process has been developed as an effective and efficient method for obtaining ultra-high purity hydrogen from impure feed streams. A typical membrane gas flow possesses multi-scale flow characteristics, comprising a macroscopic flow regime on both sides of the membrane and a microscopic flow regime in the pores within the membrane. A better understanding of the fundamentals of such flow behaviors and mass transfer at a multi-scale level is therefore crucial for a better membrane architecture design, which could lead to better membrane separation efficiency and reliability for hydrogen productions in fuel cells. In this paper, a novel numerical analysis method combining the direct simulation Monte Carlo (DSMC) method with the smoothed particle hydrodynamics (SPH) method is presented for the multi-scale flow prediction in a membrane. Using the coupled method, the rarefied flow behaviors within a micro-orifice pore can be predicted by the DSMC method, while the continuum flow behaviors on both sides of the membrane can be simulated by the SPH method simultaneously. To investigate the various flow behaviors and mass transfer between different components, such as H_2 and CO in the membrane, the pressure, velocity, molar concentration, mass flowrate and rarefaction of the H_2 and CO components are compared in details. The influences to the multi-scale flow from the orifice feature and size are discussed. Some unique phenomena are observed to be quite different from that observed in either a solely macroscopic or microscopic flow. The results can be greatly beneficial for the understanding of the mechanism of membrane separation, and the designing of the membranes for hydrogen productions in fuel cell applications.
机译:膜分离工艺已被开发为一种从不纯进料流中获得超高纯度氢气的有效方法。典型的膜气流具有多尺度的流动特性,包括膜两侧的宏观流态和膜内孔中的微观流态。因此,更好地理解这种流动行为和传质在多尺度水平上的基础对于更好的膜结构设计至关重要,因为膜结构设计可以提高膜分离效率和燃料电池制氢的可靠性。本文提出了一种新的数值分析方法,将直接模拟蒙特卡罗(DSMC)方法与平滑粒子流体动力学(SPH)方法相结合,用于膜中的多尺度流动预测。使用耦合方法,可以通过DSMC方法预测微孔孔内的稀疏流动行为,而同时可以通过SPH方法模拟膜两侧的连续流动行为。为了研究膜中H_2和CO等不同组分之间的各种流动行为和传质,详细比较了H_2和CO组分的压力,速度,摩尔浓度,质量流量和稀疏度。讨论了孔口特征和尺寸对多尺度流量的影响。观察到一些独特现象与仅在宏观或微观流动中观察到的现象完全不同。该结果对于理解膜分离的机理以及用于燃料电池应用中的制氢膜的设计可能是非常有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号