...
首页> 外文期刊>International journal of numerical methods for heat & fluid flow >Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube
【24h】

Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube

机译:研究纳米管直径对微管中非牛顿羧甲基纤维素/ CuO流体的湍流和传热特性的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and concentration on the velocity and temperature fields of turbulent non-Newtonian Carboxymethylcellulose (CMC)/copper oxide (CuO) nanofluid in a three-dimensional microtube. Modeling has been done using low- and high-Reynolds turbulent models. CMC/CuO was modeled using power law non-Newtonian model. The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices.Design/methodology/approach Present numerical simulation was performed with finite volume method. For obtaining higher accuracy in the numerical solving procedure, second-order upwind discretization and SIMPLEC algorithm were used. For all Reynolds numbers and volume fractions, a maximum residual of 10(-6) is considered for saving computer memory usage and the time for the numerical solving procedure.Findings In constant Reynolds number and by decreasing the diameter of nanoparticles, the convection heat transfer coefficient increases. In Reynolds numbers of 2,500, 4,500 and 6,000, using nanoparticles with the diameter of 25 nm compared with 50 nm causes 0.34 per cent enhancement of convection heat transfer coefficient and Nusselt number. Also, in Reynolds number of 2,500, by increasing the concentration of nanoparticles with the diameter of 25 nm from 0.5 to 1 per cent, the average Nusselt number increases by almost 0.1 per cent. Similarly, In Reynolds numbers of 4,500 and 6,000, the average Nusselt number increases by 1.8 per cent.Research limitations/implications The numerical simulation was carried out for three nanoparticle diameters of 25, 50 and 100 nm with three Reynolds numbers of 2,500, 4,500 and 6,000. Constant heat flux is on the channel, and the inlet fluid becomes heated and exists from it.Practical implications The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices.Originality/value This manuscript is an original work, has not been published and is not under consideration for publication elsewhere. About the competing interests, the authors declare that they have no competing interests.
机译:目的尽管已经对微管中的纳米流体流动进行了许多研究,但本文还是首次旨在研究纳米颗粒直径和浓度对湍流非牛顿羧甲基纤维素(CMC)/氧化铜的速度和温度场的影响。三维微管中的(CuO)纳米流体。使用低和高雷诺湍流模型进行了建模。使用幂律非牛顿模型对CMC / CuO进行建模。作者获得了有趣的结果,这对从事电子设备(如LED,VLSI电路和MEMS以及类似设备)冷却工作的工程师和研究人员有帮助。设计/方法/方法目前的数值模拟是使用有限体积方法进行的。为了在数值求解过程中获得更高的精度,使用了二阶迎风离散化和SIMPLEC算法。对于所有雷诺数和体积分数,考虑最大残差10(-6),以节省计算机内存使用量和用于数值求解过程的时间。发现在恒定雷诺数和通过减小纳米粒子直径的情况下,对流传热系数增加。在雷诺数为2,500、4,500和6,000的情况下,使用直径分别为25 nm和50 nm的纳米粒子会导致对流传热系数和Nusselt数提高0.34%。同样,在雷诺数为2500的情况下,通过将直径为25 nm的纳米粒子的浓度从0.5%增加到1%,平均Nusselt数几乎增加了0.1%。类似地,在雷诺数为4,500和6,000的情况下,平均努塞尔数增加了1.8%。六千恒定的热通量在通道上,入口流体被加热并存在。实际意义作者获得了有趣的结果,这对从事电子设备(如LED,VLSI电路和MEMS)冷却工作的工程师和研究人员有帮助。原创性/价值本手稿是原创作品,尚未出版,也未考虑在其他地方出版。关于竞争利益,作者宣称他们没有竞争利益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号