...
首页> 外文期刊>International journal of numerical methods for heat & fluid flow >Biomass pyrolysis modeling of systems at laboratory scale with experimental validation
【24h】

Biomass pyrolysis modeling of systems at laboratory scale with experimental validation

机译:实验室规模的系统生物质热解建模,并经过实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - Thermochemical conversion processes are one of the possible solutions for the flexible production of electric and thermal power from biomass. The pyrolysis degradation process presents, among the others, the interesting features of biofuels and high energy density bio-oil production potential high conversion rate. In this paper, numerical results of a slow batch and continuous fast pyrolyzers, are presented, aiming at validating both a tridimensional computational fluid dynamics-discrete element method (CFD-DEM) and a monodimensional distributed activation energy model (DAEM) represents with data collected in dedicated experiments. The purpose of this paper is then to provide reliable models for industrial scale-up and direct design purposes. Design/methodology/approach - The slow pyrolysis experimental system, a batch of small-scale constant-pressure bomb for allothermic conversion processes, is presented. A DEM numerical model has been implemented by means of a modified OpenFOAM solver. The fast pyrolysis experimental system and a lab scale screw reactor designed for biomass fast pyrolysis conversion are also presented along with a 1D numerical model to represent its operation. The model which is developed for continuous stationary feeding conditions and based on a four-parallel reaction chemical framework is presented in detail. Findings - The slow pyrolysis numerical results are compared with experimental data in terms of both gaseous species production and reduction of the bed height showing good predictive capabilities. Fast pyrolysis numerical results have been compared to the experimental data obtained from the fast pyrolysis process of spruce wood pellet. The comparison shows that the chemical reaction modeling based on a Gaussian DAEM is capable of giving results in very good agreement with the bio-oil yield evaluated experimentally. Originality/value - As general results of the proposed activities, a mixed experimental and numerical approach has demonstrated a very good potential in developing design tools for pyrolysis development.
机译:目的-热化学转化工艺是从生物质灵活生产电能和热能的可能解决方案之一。热解降解过程包括生物燃料的有趣特征以及高能量密度的生物油生产潜力高转化率。本文介绍了慢速间歇式和连续快速热解器的数值结果,旨在验证三维计算流体动力学离散元方法(CFD-DEM)和一维分布式活化能模型(DAEM)代表的数据收集在专门的实验中。然后,本文的目的是为工业规模放大和直接设计目的提供可靠的模型。设计/方法/方法-介绍了慢热解实验系统,一批用于等温转化过程的小规模恒压炸弹。 DEM数值模型已通过改进的OpenFOAM求解器实现。还介绍了为生物质快速热解转化设计的快速热解实验系统和实验室规模的螺杆反应器,以及代表其操作的一维数值模型。详细介绍了针对连续静止进料条件开发的模型,该模型基于四平行反应化学框架。研究结果-将缓慢的热解数值结果与实验数据进行了比较,无论是气态物质的产生还是床高度的减小都显示出良好的预测能力。快速热解数值结果已与从云杉木屑快速热解过程获得的实验数据进行了比较。比较表明,基于高斯DAEM的化学反应模型能够提供与实验评估的生物油产率非常吻合的结果。原创性/价值-作为拟议活动的总体结果,混合实验和数值方法证明了开发热解开发设计工具的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号