...
首页> 外文期刊>Japanese journal of applied physics >Effects of dual-spacer dielectrics on low-power and high-speed performance of sub-10 nm tunneling field-effect transistors
【24h】

Effects of dual-spacer dielectrics on low-power and high-speed performance of sub-10 nm tunneling field-effect transistors

机译:双垫片电介质对10 nm以下隧穿场效应晶体管的低功率和高速性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we propose and investigate a dual-spacer dielectric structure for realizing a sub-10 nm tunneling field-effect transistors (TFET) with excellent low-power (LP) and switching performance. The effects of the dual-spacer dielectric were assessed by analyzing the direct current (DC) and radio frequency (RF) performance of the GaAs0.5Sb0.5/In0.53Ga0.47As heterojunction-based short channel TFETs. The dual-spacer dielectric that consists of hafnium oxide (HfO2) and silicon dioxide (SiO2) raises an energy-band on drain-side because of the fringe field induced by the high-k spacer dielectric HfO2. The raised energy-band suppresses direct band-to-band tunneling (BBT) through the channel region and drain-induced barrier thinning (DIBT) phenomenon with improvement in the off-state current (I-off) and subthreshold swing (S). The dual-spacer dielectric also influences total gate capacitance (C-gg) because the HfO2 in the dual-spacer dielectric increases out-fringe capacitance (C-of) in gate-to-drain capacitance (C-gd). Although the proposed TFET has a high C-gd, the optimized TFET with the HfO2 length (Ldual-spacer) of 30 nm achieves a lower intrinsic delay time (t), a higher cut-off frequency (f(T)), and a higher maximum oscillation frequency (f(max)) owing to higher current performance and smaller gate-to-source capacitance (C-gs). (C) 2016 The Japan Society of Applied Physics
机译:在本文中,我们提出并研究了一种双垫片介电结构,以实现具有出色的低功耗(LP)和开关性能​​的亚10纳米隧穿场效应晶体管(TFET)。通过分析基于异质结的GaAs0.5Sb0.5 / In0.53Ga0.47As短沟道TFET的直流(DC)和射频(RF)性能,评估了双垫片电介质的影响。由于高k间隔电介质HfO2产生的边缘场,由氧化ha(HfO2)和二氧化硅(SiO2)组成的双间隔电介质提高了漏极侧的能带。升高的能带抑制了通过沟道区域的直接带间隧穿(BBT)和漏极诱导的势垒变薄(DIBT)现象,并改善了截止状态电流(I-off)和亚阈值摆幅(S)。双间隔物电介质还会影响总栅极电容(C-gg),因为双间隔物电介质中的HfO2会增加栅极至漏极电容(C-gd)的边缘电容(C-of)。尽管建议的TFET具有较高的C-gd,但HfO2长度(Ldual-spacer)为30 nm的优化TFET可以实现更低的固有延迟时间(t),更高的截止频率(f(T))和由于较高的电流性能和较小的栅极至源极电容(C-gs),因此具有较高的最大振荡频率(f(max))。 (C)2016年日本应用物理学会

著录项

  • 来源
    《Japanese journal of applied physics》 |2016年第6s1期|06GG02.1-06GG02.5|共5页
  • 作者单位

    Kyungpook Natl Univ, Sch Elect Engn, Taegu 702701, South Korea;

    Kyungpook Natl Univ, Sch Elect Engn, Taegu 702701, South Korea;

    Gachon Univ, Dept Elect Engn, Songnam 461701, Gyeonggi, South Korea;

    Chung Ang Univ, Sch Elect & Elect Engn, Seoul 156756, South Korea;

    Kyungpook Natl Univ, Sch Elect Engn, Taegu 702701, South Korea;

    Kyungpook Natl Univ, Sch Elect Engn, Taegu 702701, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号