...
首页> 外文期刊>Journal of Aircraft >Reducing Induced Drag and Maneuver Loads by Active Aeroelastic Alteration
【24h】

Reducing Induced Drag and Maneuver Loads by Active Aeroelastic Alteration

机译:通过主动气动弹性改变来减少感应阻力和操纵载荷

获取原文
获取原文并翻译 | 示例
           

摘要

Induced-drag reduction and maneuver load relief are two recent benefits of active aeroelastic wing technology. Judiciously deflecting wing-edge flaps can alter an unfavorable force distribution aeroelastically. Active distribution matching control to reduce induced drag and active load alleviation control by reducing wing bending moments are such active aeroelastic wing applications. Kolonay and Eastep (Optimal Scheduling of Control Surfaces on Flexible Wings to Reduce Induced Drag, Journal of Aircraft, Vol.43, No.6, Nov.-Dec.2006, pp.1655-1661) posed a least-squares problem to match the calculated distribution to an elliptic distribution. Zink etal. (Maneuver Trim Optimization Techniques for Active Aeroelastic Wings, Journal of Aircraft, Vol.38, No.6, 2001, pp.1139-1146) posed aircraft trimming as bending-moment minimization to provide external-load relief at the wing root. Analytic gradients, exact aeroelastic analyses, and closed-form trim solutions are unique features of the Automated Structural Optimization System. Both teams employed the Automated Structural Optimization System to solve their multidisciplinary optimization problems but still encountered inconveniences in obtaining required sensitivity data and in performing required trim optimization. This paper treats two forms of active aeroelastic alteration, with each being a generalization of these active distribution matching control and active load alleviation control formulations, and it develops analytic solution techniques that render the sensitivity evaluations and optimization calculations natural and convenient. Two strategies combine to resolve the inconveniences and enable in-process noniterative trim optimization and analytic sensitivity evaluation. The active aeroelastic alteration solution techniques are demonstrated by results of initial test and verification on a classical forward-swept wing example.
机译:减少诱导阻力和减轻机动负荷是主动气动弹性机翼技术的两个近期优势。明智地使翼型襟翼偏斜会改变空气弹力的不利分布。主动分布匹配控制以减小感应阻力,并通过减小机翼弯矩来减轻主动载荷,是这种主动气动弹性机翼的应用。 Kolonay和Eastep(柔性机翼控制面的最佳调度以减少感应阻力),《飞机杂志》,第43卷,第6期,2006年11月至12月,第1655-1661页)提出了一个最小二乘匹配的问题计算出的分布为椭圆形分布。 Zink等。 (主动气动弹性翼的机动修剪优化技术,《飞机杂志》,第38卷,第6期,2001年,第1139-1146页)将飞机修剪作为最小化弯矩来提供机翼根部的外部载荷释放。解析梯度,精确的气动弹性分析和闭合形式的修整解决方案是自动结构优化系统的独特功能。两个团队都使用自动结构优化系统来解决他们的多学科优化问题,但是在获得所需的敏感度数据和执行所需的修整优化方面仍然遇到不便。本文讨论了主动气动弹性改变的两种形式,每种形式都是这些主动分布匹配控制和主动载荷减轻控制公式的概括,并且开发了解析解决方案技术,使灵敏度评估和优化计算变得自然而方便。两种策略结合起来解决了不便,并实现了过程中的非迭代修整优化和分析灵敏度评估。主动空气弹性改变解决方案技术通过经典前掠机翼示例的初步测试和验证结果得到证明。

著录项

  • 来源
    《Journal of Aircraft》 |2016年第6期|1787-1801|共15页
  • 作者

    Lin JiGuan G.;

  • 作者单位

    Control Res Corp, Lexington, MA 02421 USA|AIAA, Reston, VA 20191 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号