...
首页> 外文期刊>Journal of Aircraft >Fracture Analysis of a Curvilinearly Stiffener Panel Subjected to Multiple Combined Loadings
【24h】

Fracture Analysis of a Curvilinearly Stiffener Panel Subjected to Multiple Combined Loadings

机译:组合荷载作用下曲线型加劲肋板的断裂分析

获取原文
获取原文并翻译 | 示例
           

摘要

A global-local finite element analysis was performed to study the damage tolerance of curvilinearly stiffened panels, fabricated using the modern additive-manufacturing process that can create so-called unitized structures. In the first step, a buckling analysis of panels was performed to determine whether the panels satisfied the buckling constraint in an undamaged state. In the second step, stress distributions in the panel were analyzed to determine the location of the critical stress under combined shear and compression loadings. Then, a fracture analysis of the curvilinearly stiffened panel with a crack designed at the earlier-obtained location of the critical stress, which was the common location with the maximum magnitude of the principal stresses and von Mises stress, was performed under combined shear and tensile loadings. A mesh-sensitivity analysis was performed to validate the choice of the mesh density near the crack tip. All analyses were performed using the global-local finite element method using MSC.Marc, and the global finite element methods using MSC.Marc and ABAQUS. A negligible difference in results and 94% savings in the CPU time were achieved using the global-local finite element method over the global finite element method by using a mesh density of 8.4 element/mm ahead of the crack tip. To study the influence of different loads on basic modes of fracture, the shear and normal (tensile) loads were varied differently. It was observed that the case with the fixed shear load but variable normal loads, and the case with the fixed normal load but variable shear loads were mode I. Under the maximum combined-loading condition, the largest effective stress-intensity factor was much smaller than the critical-stress-intensity factor.
机译:进行了全局局部有限元分析,以研究使用现代增材制造工艺制造的曲线加筋板的损伤容限,这种增材制造工艺可以创建所谓的单元结构。第一步,对面板进行屈曲分析,以确定面板在未损坏状态下是否满足屈曲约束。在第二步中,分析面板中的应力分布,以确定在组合剪切和压缩载荷下的临界应力位置。然后,在组合的剪切和拉伸条件下,对在临界应力的较早获得的位置处设计的具有裂纹的曲线加筋板进行断裂分析,该位置是主应力和冯·米塞斯应力最大的共同位置。加载。进行了网格敏感性分析以验证裂纹尖端附近的网格密度的选择。所有分析都是使用MSC.Marc的全局局部有限元方法,以及使用MSC.Marc和ABAQUS的全局有限元方法进行的。通过在裂纹尖端之前使用8.4元素/ mm的网格密度,与使用局部有限元方法相比,使用局部局部有限元方法可在结果上实现微不足道的节省,并节省94%的CPU时间。为了研究不同载荷对基本断裂模式的影响,剪切载荷和法向(拉伸)载荷的变化有所不同。观察到,在固定剪力荷载但法向荷载不变的情况下,在固定剪力荷载但法向荷载不变的情况下,模式I。在最大组合荷载条件下,最大有效应力强度因子要小得多。比临界应力强度因子大。

著录项

  • 来源
    《Journal of Aircraft》 |2013年第5期|1576-1592|共17页
  • 作者单位

    Graduate Research Assistant, Engineering Science and Mechanics, 223 Norris Hall. Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061;

    Mitchell Professor, Aerospace and Ocean Engineering, 213-E Randolph Hall. Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号