首页> 外文期刊>Journal of the American Helicopter Society >Computational Investigation of Microscale Shrouded Rotor Aerodynamics in Hover
【24h】

Computational Investigation of Microscale Shrouded Rotor Aerodynamics in Hover

机译:悬停微尺度罩式转子空气动力学的计算研究

获取原文
获取原文并翻译 | 示例
           

摘要

A compressible Reynolds-averaged Navier-Stokes (RANS) solver is used to investigate the aerodynamics of a microscale shrouded rotor configuration in hover; to evaluate the predictive capability of the computational approach and to understand the flow physics of the microscale shrouded systems. The overall performance is well predicted for a range of rotational speeds. The shrouded configuration shows improved performance over the free rotor, mainly seen as an increase in thrust. The thrust produced by the rotor in the shrouded configuration is lower than that of the free rotor, but the thrust generated by the shroud more than compensates for the deficit. The thrust produced by the shroud is identified to come from two main sources. First, the low pressure created primarily by the blades and partly by the tip vortex around the shroud inlet generates large shroud thrust at sections near the blade location. Second, the suction created by the flow accelerating around the shroud inlet generates additional thrust and becomes the primary source of thrust production at shroud sections away from the blades. The low pressure at the core of the tip vortex can help in enhancing the flow acceleration. A study of the effect of various shroud parameters shows that the diffuser angle and diffuser length have a secondary influence on the performance of the system, whereas smaller tip clearance and use of elliptic shroud inlet significantly improve the overall performance.
机译:使用可压缩的雷诺平均Navier-Stokes(RANS)求解器研究悬停时微尺度带罩转子构型的空气动力学特性。评估计算方法的预测能力并了解微尺度带罩系统的流动物理学。对于一系列转速,整体性能得到了很好的预测。带罩的配置显示了比自由转子更高的性能,主要表现为推力的增加。转子在有罩结构中产生的推力低于自由转子,但是罩产生的推力可以弥补不足。护罩产生的推力被确定为来自两个主要来源。首先,主要由叶片产生的低压,部分由罩盖入口周围的叶尖涡流产生,在叶片位置附近的部分产生较大的罩盖推力。第二,围绕罩入口加速的流动所产生的吸力产生额外的推力,并成为远离叶片的罩部分处产生推力的主要来源。尖端涡旋核心处的低压有助于提高流动加速度。对各种护罩参数影响的研究表明,扩散器角度和扩散器长度对系统的性能具有次要影响,而较小的叶尖间隙和使用椭圆形的护罩入口则可以显着改善整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号