首页> 外文期刊>Journal of Applied Physics >Chemical speciation at buried interfaces in high-temperature processed polycrystalline silicon thin-film solar cells on ZnO:Al
【24h】

Chemical speciation at buried interfaces in high-temperature processed polycrystalline silicon thin-film solar cells on ZnO:Al

机译:ZnO:Al上高温处理的多晶硅薄膜太阳能电池埋藏界面处的化学形态

获取原文
获取原文并翻译 | 示例
           

摘要

The combination of polycrystalline silicon (poly-Si) thin films with aluminum doped zinc oxide layers (ZnO:Al) as transparent conductive oxide enables the design of appealing optoelectronic devices at low costs, namely in the field of photovoltaics. The fabrication of both thin-film materials requires high-temperature treatments, which are highly desired for obtaining a high electrical material quality. Annealing procedures are typically applied during crystallization and defect-healing processes for silicon and can boost the carrier mobility and conductivity of ZnO:Al layers. In a combined poly-Si/ZnO:Al layer system, an in-depth knowledge of the interaction of both layers and the control of interface reactions upon thermal treatments is crucial. Therefore, we analyze the influence of rapid thermal treatments up to 1050 ℃ on solid phase crystallized poly-Si thin-film solar cells on ZnO:Al-coated glass, focusing on chemical interface reactions and modifications of the poly-Si absorber material quality. The presence of a ZnO:Al layer in the solar cell stack was found to limit the poly-Si solar cell performance with open circuit voltages only below 390 mV (compared to 435 mV without ZnO film), even if a silicon nitride (SiN) diffusion barrier was included. A considerable amount of diffused zinc inside the silicon was observed. By grazing-incidence X-ray fluorescence spectrometry, a depth-resolving analysis of the elemental composition close to the poly-Si/(SiN)/ZnO:Al interface was carried out. Temperatures above 1000 ℃ were found to promote the formation of new chemical compounds within about 10nm of interface, such as zinc silicates (Zn_2SiO_4) and aluminium oxide (Al_xO_y). These results give valuable insights about the temperature-limitations of Si/ZnO thin-film solar cell fabrication and the formation of high-mobility ZnO-layers by thermal anneal.
机译:多晶硅(poly-Si)薄膜与铝掺杂的氧化锌层(ZnO:Al)作为透明导电氧化物的结合,可以以低成本(即在光伏领域)设计出有吸引力的光电器件。两种薄膜材料的制造都需要高温处理,这对于获得高电气材料质量是非常需要的。退火程序通常在硅的结晶和缺陷修复过程中应用,可以提高ZnO:Al层的载流子迁移率和电导率。在组合的多晶硅/ ZnO:Al层系统中,深入了解两层的相互作用以及热处理时界面反应的控制至关重要。因此,我们分析了高达1050℃的快速热处理对ZnO:Al涂层玻璃上固相结晶多晶硅薄膜太阳能电池的影响,重点是化学界面反应和多晶硅吸收剂材料质量的改变。发现即使在氮化硅(SiN)的情况下,开路电压仅低于390 mV(相比之下,无ZnO膜的435 mV),ZnO:Al层的存在也会限制多晶硅太阳能电池的性能。包括扩散阻挡层。观察到硅内部有大量的扩散锌。通过掠入射X射线荧光光谱法,对靠近poly-Si /(SiN)/ ZnO:Al界面的元素组成进行了深度解析分析。超过1000℃的温度会促进界面约10nm内新化合物的形成,例如硅酸锌(Zn_2SiO_4)和氧化铝(Al_xO_y)。这些结果为Si / ZnO薄膜太阳能电池制造的温度限制以及通过热退火形成高迁移率ZnO层提供了有价值的见解。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第4期|044519.1-044519.7|共7页
  • 作者单位

    Helmholtz-Zentrum fuer Materialien und Energie, Institut Silizium Photovoltaik, Kekulestr. 5, 12489 Berlin, Germany;

    Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Analytische Rontgenphysik, Hardenbergstr. 36,10623 Berlin, Germany;

    Helmholtz-Zentrum fuer Materialien und Energie, Institut Silizium Photovoltaik, Kekulestr. 5, 12489 Berlin, Germany;

    Physikalisch-Technische Bundesanstalt, Abbestr. 2-12,10587 Berlin, Germany;

    Physikalisch-Technische Bundesanstalt, Abbestr. 2-12,10587 Berlin, Germany;

    Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Analytische Rontgenphysik, Hardenbergstr. 36,10623 Berlin, Germany;

    Helmholtz-Zentrum fuer Materialien und Energie, Institut Silizium Photovoltaik, Kekulestr. 5, 12489 Berlin, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号