...
首页> 外文期刊>Journal of Applied Physics >Monte Carlo simulation of electron transport in a graphene diode with a linear energy band dispersion
【24h】

Monte Carlo simulation of electron transport in a graphene diode with a linear energy band dispersion

机译:具有线性能带色散的石墨烯二极管中电子传输的蒙特卡洛模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Electron transport and energy relaxation in a 100-nm channel n~+-n-n~+ monolayer graphene diode were studied by using semiclassical Monte Carlo particle simulations. A diode with a conventional parabolic band and an identical geometry and scattering process was also analyzed in an attempt to confirm that the characteristic transport properties originated from the linear energy band structure. We took into account two scattering mechanisms: isotropic elastic scattering and inelastic phonon emission. The carrier velocity distributions in the two diodes show remarkable differences reflecting their band dispersions. Electron velocity in the monolayer graphene diode is high in the channel region and remains almost constant until the energy relaxation begins. Inelastic scattering does not reduce electron velocity so severely, whereas elastic scattering significantly decreases it through backscattering of hot electrons with high kinetic energy. Elastic scattering also degrades the ballisticity and the drain current; however, increasing the inelastic scattering offsets these effects. We found that elastic scattering should be suppressed to improve the performance of graphene devices.
机译:利用半经典蒙特卡洛粒子模拟研究了100nm沟道n〜+ -n-n〜+单层石墨烯二极管中的电子传输和能量弛豫。为了确定特性传输特性源自线性能带结构,还对具有常规抛物线带,相同几何形状和散射过程的二极管进行了分析。我们考虑了两种散射机制:各向同性弹性散射和非弹性声子发射。两个二极管中的载流子速度分布显示出明显的差异,反映了它们的频带色散。单层石墨烯二极管中的电子速度在沟道区很高,并且几乎保持恒定,直到能量弛豫开始。非弹性散射不会如此严重地降低电子速度,而弹性散射会通过具有高动能的热电子的反向散射而大大降低电子速度。弹性散射还会降低弹道和漏极电流。但是,增加非弹性散射可以抵消这些影响。我们发现应抑制弹性散射,以提高石墨烯器件的性能。

著录项

  • 来源
    《Journal of Applied Physics》 |2011年第10期|p.893-899|共7页
  • 作者单位

    Nanoelectronics Research Center, Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan,Green Nanoelectronics Collaborative Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan;

    Department of Electronics and Electrical Engineering, Keio University, Yokohama 223-8522, Japan;

    Nanoelectronics Research Center, Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan,Green Nanoelectronics Collaborative Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan;

    Nanoelectronics Research Center, Fujitsu Laboratories Ltd., Atsugi 243-0197, Japan,Green Nanoelectronics Collaborative Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号