首页> 外文期刊>Journal of Applied Physics >Spin wave generation via localized spin-orbit torque in an antiferromagnet-topological insulator heterostructure
【24h】

Spin wave generation via localized spin-orbit torque in an antiferromagnet-topological insulator heterostructure

机译:通过局部旋转轨道扭矩在反霉菌 - 拓扑绝缘体异性结构中通过局部旋转轨道扭矩产生旋转波

获取原文
获取原文并翻译 | 示例
           

摘要

The spin-orbit torque induced by a topological insulator (TI) is theoretically examined for spin wave generation in a neighboring antiferromagnetic thin film. The investigation is based on the micromagnetic simulation of Neel vector dynamics and the analysis of transport properties in the TI. The results clearly illustrate that propagating spin waves can be achieved in the antiferromagnetic thin-film strip through localized excitation, traveling over a long distance. The oscillation amplitude gradually decays due to the non-zero damping as the Neel vector precesses around the magnetic easy axis with a fixed frequency. The frequency is also found to be tunable via the strength of the driving electrical current density. While both the bulk and the surface states of the TI contribute to induce the effective torque, the calculation indicates that the surface current plays a dominant role over the bulk counterpart except in the heavily degenerate cases. Compared to the more commonly applied heavy metals, the use of a TI can substantially reduce the threshold current density to overcome the magnetic anisotropy, making it an efficient choice for spin wave generation. The Neel vector dynamics in the nano-oscillator geometry are examined as well.
机译:理论上检查由拓扑绝缘体(TI)引起的旋转轨道扭矩,用于在相邻的反铁磁薄膜中进行旋转波产生。该研究基于Neel Vector动态的微磁性模拟及Ti中运输性能分析。结果清楚地说明,通过局部激发,可以在防铁磁性薄膜条中实现传播的旋转波,长途行进。由于非零阻尼作为具有固定频率的磁性容易轴线周围的NEEL载体的偏移,振荡幅度逐渐衰减。还发现频率通过驱动电流密度的强度进行可调谐。虽然TI的散装和表面状态都有助于诱导有效扭矩,但计算表明,除了重度造成的情况下,表面电流在散装对应上发挥着主导作用。与更常用的重金属相比,使用Ti可以大大降低阈值电流密度以克服磁各向异性,使其成为旋转波产生的有效选择。还检查了纳米振荡器几何形状中的发褐色矢量动态。

著录项

  • 来源
    《Journal of Applied Physics》 |2020年第4期|043901.1-043901.6|共6页
  • 作者单位

    Department of Electrical and Computer Engineering North Carolina State University Raleigh North Carolina 27695 USA;

    Department of Electrical and Computer Engineering North Carolina State University Raleigh North Carolina 27695 USA V. Lashkaryov Institute of Semiconductor Physics National Academy of Sciences of Ukraine Kyiv 03680 Ukraine;

    Department of Electrical and Computer Engineering North Carolina State University Raleigh North Carolina 27695 USA Department of Physics North Carolina State University Raleigh North Carolina 27695 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号