首页> 外文期刊>Journal of Computational Neuroscience >Modulation of hippocampal rhythms by subthreshold electric fields and network topology
【24h】

Modulation of hippocampal rhythms by subthreshold electric fields and network topology

机译:亚阈值电场和网络拓扑对海马节律的调节

获取原文
获取原文并翻译 | 示例
       

摘要

Theta (4-12 Hz) and gamma (30-80 Hz) rhythms are considered important for cortical and hippocampal function. Although several neuron types are implicated in rhythmogene-sis, the exact cellular mechanisms remain unknown. Subthreshold electric fields provide a flexible, area-specific tool to modulate neural activity and directly test functional hypotheses. Here we present experimental and computational evidence of the interplay among hippocampal synaptic circuitry, neuronal morphology, external electric fields, and network activity. Elec-trophysiological data are used to constrain and validate an anatomically and biophysically realistic model of area CA1 containing pyramidal cells and two interneuron types: dendritic- and perisomatic-targeting. We report two lines of results: addressing the network structure capable of generating theta-modulated gamma rhythms, and demonstrating electric field effects on those rhythms. First, theta-modulated gamma rhythms require specific inhibitory connectivity. In one configuration, GABAergic axo-dendritic feedback on pyramidal cells is only effective in proximal but not distal layers. An alternative configuration requires two distinct perisomatic interneuron classes, one exclusively receiving excitatory contacts, the other additionally targeted by inhibition. These observations suggest novel roles for particular classes of oriens and basket cells. The second major finding is that subthreshold electric fields robustly alter the balance between different rhythms. Independent of network configuration, positive electric fields decrease, while negative fields increase the theta/gamma ratio. Moreover, electric fields differentially affect average theta frequency depending on specific synaptic connectivity. These results support the testable prediction that subthreshold electric fields can alter hippocampal rhythms, suggesting new approaches to explore their cognitive functions and underlying circuitry.
机译:Theta(4-12 Hz)和γ(30-80 Hz)节律被认为对皮层和海马功能很重要。尽管有几种神经元类型与节律有关,但确切的细胞机制仍然未知。亚阈值电场提供了一种灵活的,针对特定区域的工具,可调节神经活动并直接测试功能性假设。在这里,我们介绍海马突触电路,神经元形态,外部电场和网络活动之间相互作用的实验和计算证据。电生理数据用于约束和验证包含锥体细胞和两种中间神经元类型的区域CA1的解剖和生物物理逼真的模型:树突靶向和Perisomatic靶向。我们报告了两行结果:处理能够生成经θ调制的伽玛节律的网络结构,以及证明电场对那些节律的影响。首先,经θ调节的伽玛节律需要特定的抑制连接性。在一种配置中,锥体细胞上的GABA能的轴突树突反馈仅在近端层有效,而对远端层无效。另一种构型需要两种不同的周边介导的中间神经元类别,一种专门接受兴奋性接触,另一种专门通过抑制来靶向。这些观察结果表明特定种类的东方人和篮子细胞具有新的作用。第二个主要发现是,亚阈值电场会强有力地改变不同节奏之间的平衡。与网络配置无关,正电场减少,而负电场增加θ/伽马比。而且,取决于特定的突触连接性,电场有差别地影响平均θ频率。这些结果支持了可测试的预测,即阈下电场可改变海马节律,这表明探索其认知功能和潜在电路的新方法。

著录项

  • 来源
    《Journal of Computational Neuroscience》 |2013年第3期|369-389|共21页
  • 作者单位

    Center for Neural Informatics, Structures, & Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University,Fairfax, VA, USA;

    Center for Neural Engineering, Departments of Engineering Science and Mechanics, Penn State University, University Park, PA, USA;

    Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery and Bioengineering, Penn State University,University Park, PA, USA;

    Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery and Physics, Penn State University, University Park, PA, USA;

    Center for Neural Informatics, Structures, & Plasticity, and Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University,Fairfax, VA, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pyramidal; Interneuron; Theta-rhythm; Gamma-rhythm;

    机译:金字塔形Interneuron;节奏伽玛节律;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号