...
首页> 外文期刊>Journal of Crystal Growth >Computational simulations of Ribbon-Growth on substrate for photovoltaic silicon wafer
【24h】

Computational simulations of Ribbon-Growth on substrate for photovoltaic silicon wafer

机译:光伏硅片基板上碳带生长的计算模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Computational simulations of horizontal ribbon growth on substrate (RGS), used for production of silicon wafers for photovoltaic applications, have been made based on FLUENT-based solutions of the fundamental governing equations of mass, momentum and energy. A conservation equation for the liquid volume fraction, along with a solidification model, is used in addition to find the phase distributions. Validations of both the melt flow and solidification components of the computational model are made by comparing with available data on Czochralski bulk process and vertical ribbon growth process, with good agreements for these components. This provides the basis for validity of the method for silicon melt flow and solidification processes, including the RGS. The pull speed and the heat extraction rates are varied to find the optimum production conditions during RGS. The pull speed can be directly input in the current model, and shows the effects of decreased residence time at high pull speeds. At intermediate heat extraction rates, the solidification dynamics can lead to disruptions in the melt flow on the substrate, leading to inhomogeneous solidification conditions. A test matrix involving the pull speed and the heat extraction rate shows that a pull speed of less than 0.1 m/s and heat extraction rate of greater than 100 W/cm~2 are the necessary conditions for achieving complete and stable solidification over a length scale of 0.8 m in the current configuration. These numbers translate to 2 kJ/m~2 as the minimum necessary enthalpy flux during stable RGS.
机译:基于质量,动量和能量基本控制方程的基于FLUENT的解决方案,进行了用于在光伏应用中生产硅晶片的基板上水平带状生长(RGS)的计算模拟。除了找到相分布外,还使用液体体积分数的守恒方程以及凝固模型。通过与Czochralski本体过程和垂直带状生长过程中的可用数据进行比较,对计算模型的熔体流动和凝固成分进行了验证,并对这些成分达成了良好的共识。这为包括RGS在内的硅熔体流动和凝固过程的方法的有效性提供了依据。改变拉速和排热速率,以在RGS期间找到最佳生产条件。可以在当前模型中直接输入拉速,并显示在高拉速下停留时间减少的影响。在中等的排热速率下,固化动力学会导致基材上熔体流动的中断,从而导致不均匀的固化条件。牵拉速度和吸热率的测试矩阵表明,拉拔速度小于0.1 m / s和吸热率大于100 W / cm〜2是在一定长度上实现完全稳定凝固的必要条件在当前配置中,比例尺为0.8 m。这些数值转换为2 kJ / m〜2,作为稳定RGS期间的最小必需焓通量。

著录项

  • 来源
    《Journal of Crystal Growth》 |2010年第4期|555-562|共8页
  • 作者单位

    Department of Mechanical and Precision Engineering, Gyeongsang National University, South Korea;

    rnDepartment of Mechanical and Precision Engineering, Gyeongsang National University, South Korea;

    Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A1. Fluid Hows; A1. Heat transfer; A1. Solidification; B1. Silicon;

    机译:A1。流体方式A1。传播热量;A1。凝固;B1。硅;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号