首页> 外文期刊>Journal of enhanced heat transfer >DESIGN AND PERFORMANCE OF A MICROCHANNEL SUPERCRITICAL CARBON DIOXIDE RECUPERATOR WITH INTEGRATED HEADER ARCHITECTURE
【24h】

DESIGN AND PERFORMANCE OF A MICROCHANNEL SUPERCRITICAL CARBON DIOXIDE RECUPERATOR WITH INTEGRATED HEADER ARCHITECTURE

机译:集成头结构的微通道超临界二氧化碳再生器的设计与性能

获取原文
获取原文并翻译 | 示例
           

摘要

Supercritical carbon dioxide (sCO(2)) power cycles have gained attention due to the relatively high efficiency and potential for simple controls. Because the temperature drop across the turbine is fairly low in sCO(2) cycles, heat recuperation is key to high cycle efficiency. In this paper, an integrated header microchannel (IHM) recuperator design is proposed for the sCO(2) power cycle. The recuperator consists of multiple short unit cells connected together by a series of flow headers to inlet and exit plena. Within each unit cell, sCO(2) flows through a microscale pin-fin array on the hot and cold sides. The thermal-fluidic performance of a representative three-layered unit cell stack is experimentally characterized. Three-dimensional computational fluid dynamics and structural analysis simulations are performed to develop the unit cell design. Experimental results indicate that effectiveness in the range of 84-95% can be achieved for a unit cell length of 18 cm and a heat capacity rate ratio ranging from 0.35 to 1. The experimentally determined overall heat transfer coefficient and pressure drop are compared against correlations in literature. The Prasher et al. [J. Heat Transfer, vol. 129, no. 2, pp. 141-153, 2007] correlation predicts the experimental pressure drop to within 9%. No heat transfer correlation was found to predict the experimental data well, with the Rasouli et al. [Int. J. Heat Mass Transfer, vol. 118, pp. 416-428, 2018] correlation showing the lowest mean average error of 29%. A heat exchanger model is developed based on the Prasher et al. and Rasouli et al. correlations. The model is integrated within a single recuperator sCO(2) cycle model to assess the impact of the IHM recuperator on the cycle efficiency.
机译:由于相对较高的效率和简单控制的潜力,超临界二氧化碳(sCO(2))功率循环已引起关注。由于在sCO(2)循环中,整个涡轮的温度下降都非常低,因此热回收对于提高循环效率至关重要。在本文中,针对sCO(2)功率循环,提出了集成式集管微通道(IHM)换热器设计。换热器由多个短单元电池组成,这些单元电池通过一系列集流管连接到入口和出口鼠耳。在每个单位单元内,sCO(2)流经热侧和冷侧的微型针翅阵列。代表性的三层单元电池堆的热流体性能在实验上得以表征。进行三维计算流体动力学和结构分析模拟,以发展单元格设计。实验结果表明,对于18 cm的晶胞长度和0.35到1的热容比,可以达到84-95%的效率。将实验确定的总传热系数和压降与相关性进行了比较。在文学中。 Prasher等。 [J.传热,第一卷129,没有。 [第2卷,第141-153页,2007]相关性预测实验压力下降到9%以内。 Rasouli等人,没有发现传热相关性可以很好地预测实验数据。 [Int。 J.传热传,第1卷。 118,416-428,2018]相关性显示出最低的平均平均误差为29%。基于Prasher等人开发的热交换器模型。和Rasouli等。相关性。该模型集成在单个换热器sCO(2)循环模型中,以评估IHM换热器对循环效率的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号