首页> 外文期刊>Journal of robotic systems >Experimental Validation and Field Performance Metrics of a Hybrid Mobile Robot Mechanism
【24h】

Experimental Validation and Field Performance Metrics of a Hybrid Mobile Robot Mechanism

机译:混合移动机器人机构的实验验证和现场性能指标

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents the experimental validation and field testing of a novel hybrid mobile robot (HMR) system using a complete physical prototype. The mobile robot system consists of a hybrid mechanism whereby the locomotion platform and manipulator arm are designed as one entity to support both locomotion and manipulation symbiotically and interchangeably. The mechanical design is briefly described along with the related control hardware architecture based on an embedded onboard wireless communication network between the robot's subsystems, including distributed onboard power using Li-ion batteries. The paper focuses on demonstrating through extensive experimental results the qualitative and quantitative field performance improvements of the mechanical design and how it significantly enhances mobile robot functionality in terms of the new operative locomotion and manipulation capabilities that it provides. In terms of traversing challenging obstacles, the robot was able to surmount cylindrical obstacles up to 0.6-m diameter; cross ditches with at least 0.635-m width; climb and descend step obstacles up to 0.7-m height; and climb and descend stairs of different materials (wood, metal, concrete, plastic plaster, etc.), different stair riser and run sizes, and inclinations up to 60 deg. The robot also demonstrated the ability to manipulate objects up to 61 kg before and after flipping over, including pushing capacity of up to 61 kg when lifting objects from underneath. The above-mentioned functions are critical in various challenging applications, such as search and rescue missions, military and police operations, and hazardous site inspections.
机译:本文介绍了使用完整的物理原型的新型混合移动机器人(HMR)系统的实验验证和现场测试。移动机器人系统由一种混合机构组成,由此将运动平台和机械手设计为一个实体,以共生和互换地支持运动和操纵。简要介绍了机械设计以及相关的控制硬件架构,这些架构基于机器人子系统之间的嵌入式车载无线通信网络,包括使用锂离子电池的分布式车载电源。本文着重于通过广泛的实验结果论证机械设计在定性和定量方面的性能改进,以及它如何通过提供新的操作运动和操纵功能来显着增强移动机器人的功能。就穿越具有挑战性的障碍物而言,该机器人能够克服直径最大为0.6 m的圆柱形障碍物。宽度至少为0.635米的交叉沟渠;爬升和下降阶梯障碍物,高度达到0.7米;以及爬升和下降不同材料(木材,金属,混凝土,塑料灰泥等),不同的楼梯立管和走行尺寸以及最大倾斜度为60度的楼梯。该机器人还展示了翻转之前和之后最多可处理61千克物体的能力,包括从下面抬起物体时可推动的最大物体重量为61千克。上述功能在各种挑战性应用中至关重要,例如搜救任务,军事和警察行动以及危险场所检查。

著录项

  • 来源
    《Journal of robotic systems》 |2010年第3期|p.250-267|共18页
  • 作者

    Pinhas Ben-Tzvi;

  • 作者单位

    Robotics and Mechatronics Laboratory, Department of Mechanical and Aerospace Engineering, The George Washington University, 801 22nd Street, NW, Washington, D.C. 20052;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号