...
首页> 外文期刊>Journal of Hazardous Materials >Graphene oxide enhanced ozonation of 5-chloro-2-methyl-4-isothiazolin-3- one: Kinetics, degradation pathway, and toxicity
【24h】

Graphene oxide enhanced ozonation of 5-chloro-2-methyl-4-isothiazolin-3- one: Kinetics, degradation pathway, and toxicity

机译:石墨烯氧化物增强的5-氯-2-甲基-4-异噻唑啉-3-一:动力学,降解途径和毒性

获取原文
获取原文并翻译 | 示例
           

摘要

Kathon is among the most common non-oxidative biocides, containing 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT) and methylisothiazolone (MIT) as the active ingredients. In our previous work, MIT was shown to be efficiently removed by ozonation. In this work, we found that ozonation didn't readily degrade CMIT. Rate constants k(O3,CMIT) and k(center dot OH,CMIT,) determined to be 6.43 L mol(-1) s(-1) and 7.8 x 10(9) L mol(-1) s(-1), indicated that hydroxyl radicals played a more important role than ozone molecule in the CMIT ozonation which was also proved by the significant inhibition (55.7 %) when adding t-butanol (TBA). Graphene oxide (GO) greatly enhanced the CMIT ozonation, and degradation efficiency raised from 15 % to 100 % after 10 min through the increased production of hydroxyl radical. Basic conditions benefited the CMIT degradation compared with acidic and neutral conditions by promoting ozone decomposition and hydroxyl radical generation, while high carbonate and humic acid concentrations had slight influence on the CMIT degradation. In spite of the complex water matrix, CMIT degradation by GO enhanced ozonation was applicable in reverse osmosis concentrate (ROC). Based on the identification of the inorganic and organic products, a possible CMIT degradation pathway was proposed. However, CMIT transformation products still showed toxicity to Photobacterium phosphoreum and Daphnia magna even after a longer ozonation time.
机译:Kathon是最常见的非氧化杀菌剂,含有5-氯-2-甲基-4-异噻唑啉-3-一(CMIT)和甲基异噻唑(MIT)作为活性成分。在我们以前的工作中,证明了麻省理工学院通过Ozonation有效地删除。在这项工作中,我们发现Ozonation并没有易于降级CMIT。速率常数K(O3,CMIT)和K(中心点OH,CMIT)确定为6.43 L mol(-1)S(-1)和7.8×10(9)L mol(-1)s(-1 ),表明羟基自由基在CMIT臭氧中的臭氧分子发挥了更重要的作用,其在添加叔丁醇(TBA)时也通过显着的抑制(55.7%)证明。石墨烯氧化物(GO)大大提高了CMIT臭氧,通过增加羟基的产量,10分钟后的15%至100%从15%升高到100%。基本条件通过促进臭氧分解和羟基生成,基本条件使CMIT降解与酸性和中性条件相比,而高碳酸盐和腐殖酸浓度对CMIT降解有影响略有影响。尽管存在复杂的水基质,但通过去增强臭氧化的CMIT降解适用于反渗透浓缩物(ROC)。基于无机和有机产品的鉴定,提出了一种可能的CMIT降解途径。然而,即使在更长的臭氧时间后,CMIT转化产品仍然向光杆菌和Daphnia Magna显示出毒性。

著录项

  • 来源
    《Journal of Hazardous Materials》 |2020年第jul15期|122563.1-122563.9|共9页
  • 作者单位

    Tsinghua Berkeley Shenzhen Inst Shenzhen Environm Sci & New Energy Technol Engn L Shenzhen 518055 Peoples R China;

    Tsinghua Univ Sch Environm Environm Simulat & Pollut Control State Key Joint Beijing 100084 Peoples R China|Tsinghua Univ Sch Environm State Environm Protect Key Lab Microorganism Appl Beijing 100084 Peoples R China;

    Tsinghua Univ Sch Environm Environm Simulat & Pollut Control State Key Joint Beijing 100084 Peoples R China|Tsinghua Univ Sch Environm State Environm Protect Key Lab Microorganism Appl Beijing 100084 Peoples R China;

    Tsinghua Univ Sch Environm Environm Simulat & Pollut Control State Key Joint Beijing 100084 Peoples R China|Tsinghua Univ Sch Environm State Environm Protect Key Lab Microorganism Appl Beijing 100084 Peoples R China|Tsinghua Univ Guangdong Prov Engn Res Ctr Urban Water Recycling Grad Sch Shenzhen Key Lab Microorganism Applicat & Risk Control She Shenzhen 518055 Peoples R China;

    Peking Univ Lab Computat Chem & Drug Design State Key Lab Chem Oncogen Shenzhen Grad Sch Shenzhen 518055 Peoples R China;

    Tsinghua Univ Guangdong Prov Engn Res Ctr Urban Water Recycling Grad Sch Shenzhen Key Lab Microorganism Applicat & Risk Control She Shenzhen 518055 Peoples R China;

    Tsinghua Berkeley Shenzhen Inst Shenzhen Environm Sci & New Energy Technol Engn L Shenzhen 518055 Peoples R China|Tsinghua Univ Sch Environm Environm Simulat & Pollut Control State Key Joint Beijing 100084 Peoples R China|Tsinghua Univ Sch Environm State Environm Protect Key Lab Microorganism Appl Beijing 100084 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ozonation; GO; CMIT; Degradation pathway; Toxicity;

    机译:ozonation;去;cmit;降解途径;毒性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号