首页> 外文期刊>Journal of Heat Transfer >A Computational Simulation of Using Tungsten Gratings in Near-Field Thermophotovoltaic Devices
【24h】

A Computational Simulation of Using Tungsten Gratings in Near-Field Thermophotovoltaic Devices

机译:在近场热光电设备中使用钨光栅的计算模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Near-field thermophotovoltaic (NFTPV) devices have received much attention lately as an alternative energy harvesting system, whereby a heated emitter exchanges super-Planckian thermal radiation with a photovoltaic (PV) cell to generate electricity. This work describes the use of a grating structure to enhance the power throughput of NFTPV devices, while increasing the energy conversion efficiency by ensuring that a large portion of the radiation entering the PV cell is above the band gap. The device contains a high-temperature tungsten grating that radiates photons to a room-temperature In_(0.18)Ga_(0.82)Sb PV cell through a vacuum gap of several tens of nanometers. Scattering theory is used along with the rigorous coupled-wave analysis (RCWA) to calculate the radiation energy exchange between the grating emitter and the TPV cell. A parametric study is performed by varying the grating depth, period, and ridge width in the range that can be fabricated using available fabrication technologies. It is found that the power output can be increased by 40% while improving the efficiency from 29.9% to 32.0% with a selected grating emitter as compared to the case of a flat tungsten emitter. Reasons for the enhancement are found to be due to the enhanced energy transmission coefficient close to the band gap. This work shows a possible way of improving NFTPV and sheds light on how grating structures interact with thermal radiation at the nanoscale.
机译:近来,近场热光电(NFTPV)装置已成为备受关注的能量收集系统,通过这种方式,加热的发射器与光伏电池(PV)交换超普朗克热辐射来发电。这项工作描述了使用光栅结构来增强NFTPV器件的功率吞吐量,同时通过确保进入PV电池的大部分辐射位于带隙之上来提高能量转换效率。该设备包含一个高温钨光栅,该钨光栅通过几十纳米的真空间隙将光子辐射到室温的In_(0.18)Ga_(0.82)Sb PV电池。散射理论与严格的耦合波分析(RCWA)一起用于计算光栅发射器和TPV单元之间的辐射能量交换。通过在可使用现有制造技术制造的范围内改变光栅深度,周期和脊宽来进行参数研究。已经发现,与扁平钨发射极相比,使用选定的光栅发射极可以将功率输出提高40%,同时将效率从29.9%提高到32.0%。发现增强的原因是由于接近带隙的增强的能量传输系数。这项工作显示了一种改善NFTPV的可能方法,并阐明了光栅结构如何与纳米级的热辐射相互作用。

著录项

  • 来源
    《Journal of Heat Transfer》 |2017年第5期|052704.1-052704.8|共8页
  • 作者单位

    George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;

    George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332,School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

    George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;

    Fellow ASME George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fluctuation-dissipation theory; gratings; near-field thermal radiation; thermophotovoltaic;

    机译:波动耗散理论;光栅;近场热辐射;热光电;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号