首页> 外文会议>ASME International Conference on Micro/Nanoscale Heat and Mass Transfer >A COMPUTATIONAL SIMULATION OF USING TUNGSTEN GRATINGS IN NEAR-FIELD THERMOPHOTOVOLTAIC DEVICES
【24h】

A COMPUTATIONAL SIMULATION OF USING TUNGSTEN GRATINGS IN NEAR-FIELD THERMOPHOTOVOLTAIC DEVICES

机译:近场炎热球装置中钨光栅的计算模拟

获取原文

摘要

Near-field thermophotovoltaic (NFTPV) devices have received much attention lately as attractive energy harvesting systems, whereby a heated thermal emitter exchanges super-Planckian near-field radiation with a photovoltaic (PV) cell to generate electricity. This work describes the use of a grating structure to enhance the power throughput of NFTPV devices, while increasing thermal efficiency by ensuring that a large portion of the radiation entering the PV cell is above the bandgap. The device is modeled as a one-dimensional high-temperature tungsten grating on a tungsten substrate that radiates photons to a room-temperature In_(0.18)Ga_(0.82)Sb PV cell through a vacuum gap of several tens of nanometers. Scattering theory is used along with the rigorous coupled-wave analysis to calculate the radiation exchange between the grating emitter and the PV cell. A parametric study is performed by varying the grating depth, period, and ridge width in the range that can be fabricated using available fabrication technologies. By optimizing the grating parameters, it is found that the power output can be improved by 40% while increasing the energy efficiency by 6% as compared with the case of a flat tungsten emitter. Reasons for the enhancement are investigated and found to be due to the surface plasmon polariton resonance, which shifts towards lower frequencies. This work shows a possible way of improving NFTPV and sheds light on how grating structures interact with thermal radiation at the nanoscale.
机译:近场炎热光伏(NFTPV)器件最近被视为有吸引力的能量收集系统,由此加热的热发射器与光伏(PV)电池交换超级普朗克近场辐射以产生电力。该工作描述了使用光栅结构来提高NFTPV器件的电力吞吐量,同时通过确保进入PV电池的大部分辐射在带隙上方来提高热效率。该器件以钨基板上的一维高温钨光栅建模,其通过几十纳米的真空差距将光子辐射到室温In_(0.82)Ga_(0.82)Sb PV电池。散射理论与严格的耦合波分析一起使用,以计算光栅发射器和PV电池之间的辐射交换。通过改变光栅深度,时段和可以使用可用制造技术制造的范围内的光栅深度和脊宽度来执行参数研究。通过优化光栅参数,发现功率输出可以提高40%,同时与扁平钨发射器的情况相比,将能量效率提高6%。研究了增强的原因,发现是由于表面等离子体偏振子共振,其朝向较低频率转移。这项工作显示了改善NFTPV的可能方法,并阐明光栅结构如何与纳米级的热辐射相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号