...
首页> 外文期刊>Journal of Heat Transfer >Thermal Conductivity and Interface Thermal Conductance in Composites of Titanium With Graphene Platelets
【24h】

Thermal Conductivity and Interface Thermal Conductance in Composites of Titanium With Graphene Platelets

机译:钛与石墨烯薄片复合材料的导热系数和界面导热系数

获取原文
获取原文并翻译 | 示例
           

摘要

Composite films of graphene platelets (GPs) in titanium matrix were prepared on silicon (001) substrates by physical vapor deposition of titanium using magnetron sputtering and dispersion of graphene platelets. The graphene platelets were dispersed six times after each deposition of titanium film to form the composite film. Samples of titanium film and titanium film with a single layer of dispersed graphene platelets were also prepared by the same procedure. The distribution of the graphene platelets in the film was analyzed by scanning electron microscopy. Energy dispersive spectrometry was used to infer the absence of interstitial elements. The thermal conductivity of the composite and the interface thermal conductance between titanium and silicon or titanium and graphene platelets was determined by three-omega and transient thermo reflectance (TTR) techniques, respectively. The results indicate that the thermal conductivity of the composite is isotropic and improved to 40 Wm~(-1)K~(-1) from 21 Wm~(-1) K~(-1) for Ti. The interface thermal conductance between titanium and silicon is found to be 200 MWm~(-2)K~(-1) and that between titanium and graphene platelets in the C-direction to be 22 MWm~(-2)K~(-1). Modeling using acoustic and diffuse mismatch models was carried out to infer the magnitude of interface thermal conductance. The results indicate that the higher value of interface thermal conductance between graphene platelets in the ab plane and titanium matrix is responsible for the isotropic and improved thermal conductivity of the composite. Effective mean field analysis showed that the interface thermal conductance in the ab plane is high at 440 MWm~(-2)K~(-1) when GPs consist of 8 atomic layers of graphene so that it is not a limitation to improve the thermal conductivity of the composites.
机译:通过磁控溅射和石墨烯薄片的分散体物理气相沉积钛,在硅(001)基板上制备了钛基体中石墨烯薄片(GPs)的复合膜。每次沉积钛膜后,将石墨烯薄片分散六次以形成复合膜。还通过相同程序制备了钛膜和具有单层分散石墨烯薄片的钛膜的样品。通过扫描电子显微镜分析膜中石墨烯血小板的分布。能量色散光谱法用于推断是否存在间隙元素。分别通过三欧姆和瞬态热反射率(TTR)技术确定了复合材料的热导率以及钛与硅或钛与石墨烯薄片之间的界面热导率。结果表明,复合材料的热导率是各向同性的,从Ti的21 Wm〜(-1)K〜(-1)提高到40 Wm〜(-1)K〜(-1)。发现钛和硅之间的界面热导为200 MWm〜(-2)K〜(-1),钛和石墨烯薄片之间沿C方向的界面热导为22 MWm〜(-2)K〜(- 1)。进行了使用声学和扩散失配模型的建模,以推断界面导热系数的大小。结果表明,ab平面中的石墨烯薄片与钛基体之间较高的界面导热系数是复合材料各向同性和改善的导热系数的原因。有效平均场分析表明,当GPs由8个石墨烯原子层组成时,ab平面中的界面热导率较高,为440 MWm〜(-2)K〜(-1),因此提高导热性不受限制复合材料的电导率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号