...
首页> 外文期刊>Journal of Heat Transfer >Heat Transfer Experiments In A Confined Jet Impingement Configuration Using Transient Techniques
【24h】

Heat Transfer Experiments In A Confined Jet Impingement Configuration Using Transient Techniques

机译:瞬态技术在有限射流冲击构型下的传热实验

获取原文
获取原文并翻译 | 示例
           

摘要

A confined jet impingement configuration has been investigated in which the matter of in-terest is the convective heat transfer from the airflow to the passage walls. The geometry is similar to gas turbine blade cooling applications. The setup is distinct from usual cool-ing passages by the fact that no crossflow and no bulk flow directions are present. The flow exhausts through two staggered rows of holes opposing the impingement wall. Hence, a complex 3-D vortex system arises, which entails a complex heat transfer situa-tion. The transient thermochromic liquid crystal (TLC) method was used in previous stud-ies to measure the heat transfer on the passage walls. Due to the nature of these experiments, the fluid as well as the wall temperature vary with location and time. As a prerequisite of the transient TLC technique, the heat transfer coefficient is assumed to be constant over the transient experiment. Therefore, it is the scope of this article to qualify this assumption and to validate the results at discrete locations. For this purpose, fast response surface thermocouples and heat flux sensors were applied, in order to gain in-formation on the temporal evolution of the wall heat fluxes. The linear relation between heat flux and temperature difference could be verified for all measurement sites. This val-idates the assumption of a constant heat transfer coefficient. Nusselt number evaluations from independent techniques show a good agreement, considering the respective uncer-tainty ranges. For all investigated sites, the Nusselt numbers range within ±9% of the values gained from the TLC measurement
机译:已经研究了受限的射流撞击结构,其中最重要的是从气流到通道壁的对流热传递。几何形状类似于燃气轮机叶片冷却应用。该设置与通常的冷却通道不同,因为没有横流,也没有大流量方向。气流通过与冲击壁相对的两排交错的孔排出。因此,产生了复杂的3-D涡旋系统,这导致了复杂的传热条件。在先前的研究中使用瞬态热致变色液晶(TLC)方法来测量通道壁上的热传递。由于这些实验的性质,流体以及壁温随位置和时间而变化。作为瞬态TLC技术的先决条件,假设传热系数在瞬态实验中是恒定的。因此,本文的范围是限定该假设并验证离散位置的结果。为此,应用了快速响应的表面热电偶和热通量传感器,以获取有关壁热通量随时间变化的信息。热通量和温差之间的线性关系可以在所有测量位置得到验证。这验证了传热系数恒定的假设。考虑到各自的不确定性范围,通过独立技术进行的Nusselt数评估显示出很好的一致性。对于所有调查地点,Nusselt值的范围在TLC测量值的±9%以内

著录项

  • 来源
    《Journal of Heat Transfer》 |2011年第9期|p.30-38|共9页
  • 作者单位

    ASME for publication in the Journal of Heat Transfer;

    Aerospace Thermodynamics (ITLR),Universitaet Stuttgart, Pfaffenwaldring 31,D-70569 Stuttgart, Germany;

    Aerospace Thermodynamics (ITLR),Universitaet Stuttgart, Pfaffenwaldring 31,D-70569 Stuttgart, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号