...
首页> 外文期刊>Journal of Heat Transfer >A Statistical Model of Bubble Coalescence and Its Application to Boiling Heat Flux Prediction-Part II: Experimental Validation
【24h】

A Statistical Model of Bubble Coalescence and Its Application to Boiling Heat Flux Prediction-Part II: Experimental Validation

机译:气泡合并的统计模型及其在沸腾热通量预测中的应用-第二部分:实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

A mechanistic model for the boiling heat flux prediction proposed in Part I of this two-part paper (2009, "A Statistical Model of Bubble Coalescence and Its Application to Boiling Heat Flux Prediction-Part I: Model Development," ASME J. Heat Transfer, 131, p. 121013) is verified in this part. In the first step, the model is examined by experiments conducted using R134a covering a range of pressures, inlet subcoolings, and flow velocities. The density of the active nucleation sites is measured and correlated with critical diameter D_c. and static contact angle 8. Underlying submodels on bubble growth and bubble departure/lift-off radii are validated. Predictions of heat flux are compared with the experimental data with an overall good agreement observed. This model achieves an average error of ±25% for the prediction of R134a boiling curves, with the predicted maximum surface heat flux staying within ±20% of the experimentally measured critical heat flux. In the second step, the model is applied to water data measured by McAdams et al. (1949, "Heat Transfer at High Rates to Water With Surface Boiling," Ind. Eng. Chem., 41(9), pp. 1945-1953) in vertical circular tubes. The consistency suggests that the application of this mechanistic model can be extended to other flow conditions if the underlying submodels are appropriately chosen and the assumptions made during model development remain valid.
机译:本两部分论文的第一部分(2009年,“气泡聚结的统计模型及其在沸腾热通量预测中的应用-第一部分:模型开发”,ASME J.传热)中提出了一种用于预测沸腾热通量的机理模型。 (第131页,第121013页)中对此部分进行了验证。第一步,通过使用R134a进行的实验检查模型,该实验涵盖了一系列压力,入口过冷度和流速。测量活性成核位点的密度并与临界直径D_c相关。和静态接触角8.验证了气泡增长和气泡离去/提离半径的基础子模型。将热通量的预测与实验数据进行比较,观察到总体一致。对于R134a沸腾曲线的预测,该模型的平均误差为±25%,而预测的最大表面热通量则保持在实验测得的临界热通量的±20%之内。第二步,将模型应用于McAdams等人测量的水数据。 (1949,“通过表面沸腾将热量高效率地转移到水中,”工业化学,41(9),第1945-1953页)。一致性表明,如果适当选择了基础子模型并且在模型开发过程中所做的假设仍然有效,则可以将该机制模型的应用扩展到其他流动条件。

著录项

  • 来源
    《Journal of Heat Transfer》 |2009年第12期|121014.1-121014.11|共11页
  • 作者单位

    Department of Nuclear, Plasma, and Radiological Engineering,University of Illinois at Urbana-Champaign,Urbana.IL 61801 General Atomics, P.O. Box 85608, San Diego, CA;

    Department of Nuclear, Plasma, and Radiological Engineering,University of Illinois at Urbana-Champaign,Urbana.IL 61801 University of Illinois at Urbana-Champaign, Department of Nuclear, Plasma, and Radiological Engineering, 214 Nuclear Engineering Laboratory, 103 South Goodwin Avenue, Urbana, IL 61801-2984;

    Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, 2115 Mechanical Engineering Laboratory, 1206 West Green Street, Urbana, IL 61801;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    D: diameter (m); f: frequency of bubbles (Hz); h: heat transfer coefficient (W/m~2 K); h_(fg): latent heat (J/kg); N: nucleation site density or bubble density (1/m~2);

    机译:D:直径(m);f:气泡频率(Hz);h:传热系数(W / m〜2 K);h_(fg):潜热(J / kg);N:成核点密度或气泡密度(1 / m〜2);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号