首页> 外文期刊>Journal of the Institute of Brewing >A review of malting and malt processing for whisky distillation
【24h】

A review of malting and malt processing for whisky distillation

机译:威士忌蒸馏的麦芽和麦芽加工综述

获取原文
获取原文并翻译 | 示例
           

摘要

This paper encompasses a re-evaluation of published literature and data regarding wort attenuation in malt distilleries raising questions and discussing how the conventional wisdom has changed over time and what questions still need to be answered. Current knowledge is summarized in the following four points: (a) Under normal malting conditions, starch granules are partially degraded by a combination of alpha-amylase and alpha-glucosidase. This complex can open up the granule at specific sites on the surface and create characteristic 'pin-hole' lesions, which may be widened by secondary hydrolysis by alpha-and alpha-amylase, limit dextrinase and alpha-glucosidase (maltase). (b) All of these diastatic enzymes can survive mild kilning, probably by forming heat stable complexes on and within the starch granules and can continue a complete degradation of starch when mashed at ambient temperatures with glucose as the end product. (c) At normal mashing temperatures, starch granules gelatinize and dissolve with a concomitant rapid degradation to glucose, maltose, maltotriose and dextrins ranging from degree of polymerization (DP) 4 to > DP20. If there is immediate wort boiling after run-off, this is the final composition of starch derived carbohydrates according to the conventional paradigm. (d) All malt worts also contain a small amount of panose, isopanose as well as glucosyl maltodextrins, based on a core of 6(2)-alpha-glucosyl maltose (panose) or 6-alpha-maltosyl glucose (isopanose), which are remnants of the alpha-amylase/glucosidase degradation of granular starch. These dextrins are resistant to the action of debranching enzymes and their concentration may vary between 4 and 8% of the malt extract, depending on the degree of modification of the host starch granules. They may be created at the active sites of this enzyme complex when the granule is gelatinized. In a conventional mash of unboiled distilling wort, the spectrum of wort dextrins produced from gelatinized starch is reduced to true 'limit' dextrins of DP4-8 by continued alpha-amylolysis during early fermentation. These dextrins will contain side chains of either maltose or maltotriose residues surrounding the alpha-1,6-glucosidic linkage and can be debranched by limit dextrinase during late fermentation, leaving only the above glucosyl maltodextrins dextrins in the spent wash. Copyright (c) 2016 The Institute of Brewing & Distilling
机译:本文包括对有关麦芽蒸馏厂麦芽汁衰减的已发表文献和数据的重新评估,提出了一些问题,并讨论了传统观念如何随时间变化以及哪些问题仍需回答。当前的知识总结为以下四个方面:(a)在正常的制麦条件下,淀粉颗粒会通过α-淀粉酶和α-葡萄糖苷酶的组合而部分降解。这种复合物可以在表面上的特定位置打开颗粒,并形成特征性的“针孔”病变,可能会因α-和α-淀粉酶,极限糊精酶和α-葡萄糖苷酶(麦芽糖酶)的二次水解而扩大。 (b)所有这些渗析酶都可以在温和的煮沸过程中幸存下来,这可能是通过在淀粉颗粒上和内部形成热稳定的复合物而实现的,当在室温下以葡萄糖为终产物捣碎时,淀粉可以继续完全降解。 (c)在正常糖化温度下,淀粉颗粒糊化并溶解,同时迅速降解为葡萄糖,麦芽糖,麦芽三糖和糊精,聚合度(DP)4至> DP20。如果径流后麦芽汁立即沸腾,则这是常规范式中淀粉衍生的碳水化合物的最终组成。 (d)基于6(2)-α-葡糖基麦芽糖(panose)或6-α-麦芽糖基葡萄糖(isopanose)的核心,所有麦芽麦芽汁还含有少量的Panose,isopanose以及葡萄糖基麦芽糖糊精。是颗粒淀粉的α-淀粉酶/葡糖苷酶降解的残留物。这些糊精对脱支酶的作用有抵抗力,其浓度可能占麦芽提取物的4%至8%,这取决于宿主淀粉颗粒的改性程度。当颗粒糊化时,它们可能在该酶复合物的活性位点产生。在传统的未煮沸的蒸馏麦芽汁中,由糊化淀粉产生的麦芽糊精的光谱通过在早期发酵过程中持续进行的α-淀粉分解作用,被还原为DP4-8的真正“极限”糊精。这些糊精将包含围绕α-1,6-糖苷键的麦芽糖或麦芽三糖残基的侧链,并且可以在后期发酵过程中通过极限糊精酶解支,仅将上述葡糖基麦芽糖糊精糊精留在废液中。版权所有(c)2016酿酒与蒸馏研究所

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号