...
首页> 外文期刊>Journal of Materials Research >Microstructure design for fast oxygen conduction
【24h】

Microstructure design for fast oxygen conduction

机译:快速氧气传导的微结构设计

获取原文
获取原文并翻译 | 示例
           

摘要

In the past decade, the research in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations are other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.
机译:在过去的十年中,与材料散装相反,设计用于电化学应用的快速导氧材料的研究已大大转移到微观结构特征。特别是,目前了解异质界面材料中的氧能是最前沿的问题,其中界面拉伸应变被视为降低氧迁移势垒的关键参数。具有高晶界密度的纳米晶材料也引起了人们的兴趣,这可能允许利用晶界上多余的体积,从而提供类似于先前在金属中观察到的快速氧扩散通道。另外,近界面相变和失配位错是其他微结构现象/特征,正在探索以提供更快的扩散。在这篇综述中,讨论了从这些微结构特征出发对氧能学的当前理解,即热力学和动力学。实验观察,理论预测和与氧传输有关的新型原子机理被重点介绍。此外,概述了在这些新的微结构特征存在下掺杂剂与氧空位的相互作用,以及它们在未来快速离子导体设计中的未来作用。

著录项

  • 来源
    《Journal of Materials Research》 |2016年第1期|2-16|共15页
  • 作者单位

    Department of Mechanical Engineering, University of Wyoming, Laramie, Wyoming 82071, USA and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

    Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号