首页> 外文期刊>Journal of Materials Research >Stress induced anisotropy in Co-rich magnetic nanocomposites for inductive applications
【24h】

Stress induced anisotropy in Co-rich magnetic nanocomposites for inductive applications

机译:富钴磁性纳米复合材料中的应力诱导各向异性,用于感应应用

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic nanocomposites, annealed under stress, are investigated for application in inductive devices. Stress annealed Co-based metal/amorphous nanocomposites (MANCs) previously demonstrated induced magnetic anisotropies greater than an order of magnitude larger than field annealed Co-based MANCs and response to applied stress twice that of Fe-based MANCs. Transverse magnetic anisotropies and switching by rotational processes impact anomalous eddy current losses at high frequencies. Here we review induced anisotropies in soft magnetic materials and show new Co-based MANCs having seven times the response to stress annealing as compared to Fe-based MANC systems. This response correlates with the alloying of early transition metal elements (TE) that affect both induced anisotropies and resistivities. At optimal alloy compositions, these alloys exhibit a nearly linear B-H loop, with tunable permeabilities. The electrical resistivity is not a function of processing stress but trends in electrical resistivity and induced anisotropy with choice and concentration of TE content are clearly resolved. Previously reported and record-level induced anisotropies, K_u, ~20 kJ/m~3 (anisotropy fields, H_K ~ 500 Oe), in stress annealed Co-rich MANCs are increased to K_u ~ 70 kJ/m~3 (H_K > 1800 Oe) in new systems.
机译:研究了在应力下退火的磁性纳米复合材料在感应设备中的应用。应力退火的Co基金属/非晶纳米复合材料(MANCs)先前已证明比磁场退火的Co基MANCs诱导的磁各向异性大一个数量级,并且对施加的应力的响应是铁基MANC的两倍。横向磁各向异性和旋转过程的切换会影响高频下的涡流损耗。在这里,我们回顾了软磁材料中的感应各向异性,并显示了与基于Fe的MANC系统相比,新型基于Co的MANC对应力退火的响应是其七倍。该响应与影响感应各向异性和电阻率的早期过渡金属元素(TE)的合金化相关。在最佳合金组成下,这些合金表现出近乎线性的B-H回路,且磁导率可调。电阻率不是加工应力的函数,但是随着TE含量的选择和浓度,电阻率和感应各向异性的趋势得到了明确解决。先前报道的和创纪录水平的诱导各向异性,K_u,〜20 kJ / m〜3(各向异性场,H_K〜500 Oe),在应力退火的富钴MANCs中增加到K_u〜70 kJ / m〜3(H_K> 1800 Oe)在新系统中。

著录项

  • 来源
    《Journal of Materials Research》 |2016年第20期|3089-3107|共19页
  • 作者单位

    Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221;

    Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221;

    Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354;

    Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221;

    Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221 National Energy Technology Laboratory (NETL), Pittsburgh, PA 15236;

    Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15221;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号