...
首页> 外文期刊>Journal of materials science >Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach
【24h】

Evaluation of bioprosthetic heart valve failure using a matrix-fibril shear stress transfer approach

机译:使用基质原纤维剪切应力转移方法评估生物人工心脏瓣膜衰竭

获取原文
获取原文并翻译 | 示例
           

摘要

A matrix-fibril shear stress transfer approach is devised and developed in this paper to analyse the primary biomechanical factors which initiate the structural degeneration of the bioprosthetic heart valves (BHVs). Using this approach, the critical length of the collagen fibrils l(c) and the interface shear acting on the fibrils in both BHV and natural aortic valve (AV) tissues under physiological loading conditions are calculated and presented. It is shown that the required critical fibril length to provide effective reinforcement to the natural AV and the BHV tissue is l(c) = 25.36 mu m and l(c) = 66.81 mu m, respectively. Furthermore, the magnitude of the required shear force acting on fibril interface to break a cross-linked fibril in the BHV tissue is shown to be 38 mu N, while the required interfacial force to break the bonds between the fibril and the surrounding extracellular matrix is 31 mu N. Direct correlations are underpinned between these values and the ultimate failure strength and the failure mode of the BHV tissue compared with the natural AV, and are verified against the existing experimental data. The analyses presented in this paper explain the role of fibril interface shear and critical length in regulating the biomechanics of the structural failure of the BHVs, for the first time. This insight facilitates further understanding into the underlying causes of the structural degeneration of the BHVs in vivo.
机译:本文设计并开发了一种基质原纤维剪切应力传递方法,以分析引发生物人工心脏瓣膜(BHV)结构退化的主要生物力学因素。使用这种方法,计算并给出了在生理负荷条件下,BHV和自然主动脉瓣(AV)组织中胶原纤维的临界长度l(c)和作用于纤维上的界面剪切。结果表明,为天然AV和BHV组织提供有效增强所需的临界原纤维长度分别为l(c)= 25.36μm和l(c)= 66.81μm。此外,作用于原纤维界面以破坏BHV组织中交联原纤维所需的剪切力的大小显示为38μN,而破坏原纤维与周围细胞外基质之间的键所需的界面力为与自然AV相比,这些值与BHV组织的最终破坏强度和破坏模式之间具有直接的相关性,并具有31μN的直接相关性,并已针对现有实验数据进行了验证。本文提出的分析首次解释了原纤维界面剪切和临界长度在调节BHV的结构破坏的生物力学中的作用。这种见解有助于进一步了解体内BHV结构性退化的根本原因。

著录项

  • 来源
    《Journal of materials science》 |2016年第2期|42.1-42.11|共11页
  • 作者单位

    Univ Portsmouth, Sch Engn, Anglesea Rd, Portsmouth PO1 3DJ, Hants, England;

    Univ Portsmouth, Sch Engn, Anglesea Rd, Portsmouth PO1 3DJ, Hants, England;

    Univ Portsmouth, Sch Engn, Anglesea Rd, Portsmouth PO1 3DJ, Hants, England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号