首页> 外文期刊>Journal of Physical Oceanography >Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate
【24h】

Global Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation Rate

机译:从湍流耗散率的测量来确定滴定混合的整体模式

获取原文
获取原文并翻译 | 示例
           

摘要

The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (ⅰ) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ⅱ) shipboard observations of upper-ocean shear, (ⅲ) strain as measured by profiling floats, and (ⅳ) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10~(-4)) m~2 s(-1)~' and above 1000-m depth is O(10~(-5)) m~2 s~(-1). The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.
机译:作者从5200多个微结构轮廓的汇编中得出了对辉石扩散率的推论。由于微观结构的观测稀疏,因此可以间接测量由(ⅰ)系泊轮廓仪的索普规模倾覆获得的混合,将精细尺度参数化应用于(ⅱ)上层海洋剪切的船上观测,(ⅲ)应变测量轮廓浮子,以及来自全深度降低的声学多普勒电流剖面仪(LADCP)和CTD剖面的剪切和应变。湍流耗散率的垂直剖面比粗糙的地形和陡峭的,孤立的山脊底部增强。深度积分耗散率的地理位置显示出与内部波产生有关的空间变异性,这表明通向湍流的一种直接能量途径。深度在1000-m以下的全向扩散系数为O(10〜(-4))m〜2 s(-1)〜',深度在1000-m以上则为O(10〜(-5))m〜2 s〜(-1)。汇编的微结构观测值对各种内部波功率输入和地形粗糙度进行采样,从而提供了一个数据集,可用来估计代表性的全球平均耗散率和扩散率。但是,局部内部波的产生与局部耗散之间的比率存在很大的区域差异。在某些区域,深度积分的耗散率与输入到本地内部波场中的估计功率相当。在少数情况下,耗散的内部波功率比本地产生的更多,这表明存在远程内部波源。但是,在大多数位置,由于湍流耗散而损失的总功率小于输入到本地内部波场中的功率。这表明消散在其他地方,例如大陆边缘。

著录项

  • 来源
    《Journal of Physical Oceanography》 |2014年第7期|1854-1872|共19页
  • 作者单位

    Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037;

    Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California;

    College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon;

    Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington;

    Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington;

    University of Alaska Fairbanks, Fairbanks, Alaska;

    Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts;

    Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts;

    Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts;

    Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California;

    Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California;

    Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California;

    Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California;

    Department of Oceanography, University of Hawai'i at Manoa, Honolulu, Hawaii;

    Geophysical Institute, University of Bergen, Bergen, Norway;

    Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia,Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia;

    National Oceanography Centre, University of Southampton, Southampton, United Kingdom;

    Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington;

    Applied Physics Laboratory and School of Oceanography, University of Washington, Seattle, Washington;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号