...
首页> 外文期刊>Journal of power sources >Thermodynamic evaluation of methanol steam reforming for hydrogen production
【24h】

Thermodynamic evaluation of methanol steam reforming for hydrogen production

机译:甲醇蒸汽重整制氢的热力学评估

获取原文
获取原文并翻译 | 示例
           

摘要

Thermodynamic equilibrium of methanol steam reforming (MeOH SR) was studied by Gibbs free minimization for hydrogen production as a function of steam-to-carbon ratio (S/C = 0-10), reforming temperature (25-1000℃), pressure (0.5-3 atm), and product species. The chemical species considered were methanol, water, hydrogen, carbon dioxide, carbon monoxide, carbon (graphite), methane, ethane, propane, i-butane, n-butane, ethanol, propanol, i-butanol, n-butanol, and dimethyl ether (DME). Coke-formed and coke-free regions were also determined as a function of S/C ratio. Based upon a compound basis set MeOH, CO_2, CO, H_2 and H_2O, complete conversion of MeOH was attained at S/C = 1 when the temperature was higher than 200 ℃ at atmospheric pressure. The concentration and yield of hydrogen could be achieved at almost 75% on a dry basis and 100%, respectively. From the reforming efficiency, the operating condition was optimized for the temperature range of 100-225℃, S/C range of 1.5-3, and pressure at 1 atm. The calculation indicated that the reforming condition required from sufficient CO concentration ( < 10 ppm) for polymer electrolyte fuel cell application is too severe for the existing catalysts (T_r = 50℃ and S/C = 4-5). Only methane and coke thermodynamically coexist with H_2O, H_2, CO, and CO_2, while C_2H_6, C_3H_8, i-C_4H_(10), n-C_4H_(10), CH_3OH, C_2H_5OH, C_3H_7OH, i-C_4H_9OH, n-C_4H_9OH, and C_2H_6O were suppressed at essentially zero. The temperatures for coke-free region decreased with increase in S/C ratios. The impact of pressure was negligible upon the complete conversion of MeOH.
机译:通过吉布斯自由最小化研究了制氢过程中甲醇蒸汽重整(MeOH SR)的热力学平衡,它是蒸汽/碳比(S / C = 0-10),重整温度(25-1000℃),压力( 0.5-3 atm)和产品种类。所考虑的化学物质是甲醇,水,氢气,二氧化碳,一氧化碳,碳(石墨),甲烷,乙烷,丙烷,异丁烷,正丁烷,乙醇,丙醇,异丁醇,正丁醇和二甲基醚(DME)。还确定了焦炭形成区域和无焦炭区域作为S / C比的函数。以甲醇,CO_2,CO,H_2和H_2O的化合物为基准,当温度在大气压下高于200℃时,在S / C = 1时可以实现MeOH的完全转化。氢气的浓度和产率分别以干基计为75%和100%。从重整效率出发,针对温度范围为100-225℃,S / C范围为1.5-3和压力为1 atm的条件优化了操作条件。计算表明,对于现有的催化剂(T_r = 50℃和S / C = 4-5),对于聚合物电解质燃料电池而言,足够的CO浓度(<10 ppm)所需的重整条件太苛刻。仅甲烷和焦炭与H_2O,H_2,CO和CO_2热力学共存,而C_2H_6,C_3H_8,i-C_4H_(10),n-C_4H_(10),CH_3OH,C_2H_5OH,C_3H_7OH,i-C_4H_9OH,n-C_4 C_2H_6O基本上被抑制为零。随着S / C比的增加,无焦区的温度降低。对于MeOH的完全转化,压力的影响可以忽略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号