首页> 外文期刊>Journal of propulsion and power >Chemical-equilibrium analysis with adjoint derivatives for propulsion cycle analysis
【24h】

Chemical-equilibrium analysis with adjoint derivatives for propulsion cycle analysis

机译:具有伴随衍生物的化学平衡分析,用于推进循环分析

获取原文
获取原文并翻译 | 示例
           

摘要

The design optimization of aircraft engines considering their integration with the airframe has been limited by challenges with existing propulsion modeling tools. Gradient-based optimization with derivatives computed using adjoint methods has been successful in solving aerodynamic and structural shape optimization problems but has not yet been applied to coupled propulsion-airframe optimization, partly because existing tools lack analytic derivative computation. As a step toward obtaining a full cycle analysis with efficient analytic derivative computation, a new chemical-equilibrium thermodynamics solver is developed for propulsion applications. This solver provides a continuous formulation that enables analytic derivative computation using a coupled adjoint approach. The results from this solver are verified against a well-established chemical-equilibrium code. The analytic derivatives are also verified by comparing them with finite-difference approximations. The performance of the analytic derivative computations is tested using two optimizations: combustion temperature maximization with respect to equivalence ratio, and combustion temperature maximization with respect to air pressure. The results show clear speed and numerical stability benefits when comparing the proposed method against finite-difference approximations. It is now possible to use this new solver as the foundation for further development of a complete propulsion analysis for integrated propulsion-airframe design optimization.
机译:考虑到它们与机身集成的飞机发动机的设计优化受到现有推进建模工具的挑战的限制。使用伴随方法计算的导数的基于梯度的优化已成功解决了空气动力学和结构形状优化问题,但尚未应用于耦合推进飞机优化,部分原因是现有工具缺乏解析导数计算。作为通过有效的分析导数计算获得全周期分析的一步,开发了一种新的化学平衡热力学求解器用于推进应用。该求解器提供了一种连续公式,可以使用耦合伴随方法进行解析导数计算。该求解器的结果已根据公认的化学平衡代码进行了验证。解析导数也可以通过与有限差分近似进行比较来验证。使用两个优化对解析导数计算的性能进行了测试:相对当量比的燃烧温度最大化和相对于气压的燃烧温度最大化。结果表明,与有限差分近似方法相比,该方法具有明显的速度和数值稳定性。现在,可以使用这种新的求解器作为进一步发展用于综合推进器机身设计优化的完整推进器分析的基础。

著录项

  • 来源
    《Journal of propulsion and power》 |2017年第5期|1041-1052|共12页
  • 作者单位

    NASA, John H. Glenn Research Center, Cleveland, OH, United States,University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI, United States,PSA Branch, 21000 Brookpark Rd., MS 5-11, United States;

    NASA, John H. Glenn Research Center, Cleveland, OH, United States,PSA Branch, 21000 Brookpark Rd., MS 5-11, United States;

    NASA, John H. Glenn Research Center, Cleveland, OH, United States,PSA Branch, 21000 Brookpark Rd., MS 5-11, United States;

    NASA, John H. Glenn Research Center, Cleveland, OH, United States,PSA Branch, 21000 Brookpark Rd., MS 5-11, United States;

    NASA, John H. Glenn Research Center, Cleveland, OH, United States,University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI, United States;

    University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI, United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号