首页> 外文期刊>Journal of Spacecraft and Rockets >Matrix Methods for Optimal Manifesting of Multinode Space Exploration Systems
【24h】

Matrix Methods for Optimal Manifesting of Multinode Space Exploration Systems

机译:多节点空间探索系统最优表现的矩阵方法

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents matrix-based methods for determining optimal cargo manifests for space exploration. An exploration system is defined as a sequence of in-space and on-surface transports between multiple nodes coupled with demands for resources. The goal is to maximize value and robustness of exploration while satisfying logistical demands and physical constraints at all times. To reduce problem complexity, demands are abstracted to a single class of resources, and one metric (e.g., mass or volume) governs capacity limits. Matrices represent cargo carried by transports, cargo used to satisfy demands, and cargo transferred to other transports. A system of equations enforces flow conservation, demand satisfaction, and capacity constraints. Exploration system feasibility is evaluated by determining if a solution exists to a linear program or network-flow problem. Manifests are optimized subject to an objective function using linear or nonlinear programming techniques. In addition to modeling the manifesting problem, a few metrics such as the transport criticality index are formulated to enable analysis and interpretation. The proposed matrix manifest modeling methods are demonstrated with a notional lunar exploration system composed of 32 transports, including eight cargo and nine crewed landings at an outpost at the lunar south pole and several surface excursions to Malapert Crater and Schrodinger Basin. It is found that carry-along and prepositioning logistics strategies yield different manifesting solutions in which transport criticality varies. For the lunar scenario, transport criticality is larger for a prepositioning strategy (mean value of 3.02), as compared with an alternative carry-along case (mean value of 1.99).
机译:本文提出了基于矩阵的方法来确定用于太空探索的最佳货物舱单。勘探系统定义为在多个节点之间进行的空间和地面传输的序列,再加上对资源的需求。目标是在始终满足物流需求和物理约束的同时,最大化勘探的价值和稳健性。为了减少问题的复杂性,将需求抽象为一类资源,并用一个度量标准(例如质量或体积)来控制容量限制。矩阵表示运输工具运载的货物,用于满足需求的货物以及转移到其他运输工具的货物。方程系统强制执行流量守恒,需求满足和容量约束。通过确定线性程序或网络流问题是否存在解决方案来评估勘探系统的可行性。使用线性或非线性编程技术对清单进行优化,使其服从目标函数。除了对表现问题进行建模外,还制定了一些指标,例如运输关键指数,以进行分析和解释。拟议的矩阵清单建模方法通过一个由32个运输工具组成的概念性月球探测系统进行了演示,其中包括在月球南极前哨的8个货物和9个人员降落,以及对Malapert Crater和Schrodinger盆地的几次地面游览。发现随身携带和前置物流策略会产生不同的体现解决方案,在这些解决方案中,运输的关键程度有所不同。在月球情况下,与其他随身携带情况(均值1.99)相比,预定位策略的运输临界度更大(均值3.02)。

著录项

  • 来源
    《Journal of Spacecraft and Rockets》 |2011年第4期|p.679-690|共12页
  • 作者单位

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

    Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号