首页> 外文期刊>Journal of Spacecraft and Rockets >Postflight Aerothermal Analysis of Stardust Sample Return Capsule
【24h】

Postflight Aerothermal Analysis of Stardust Sample Return Capsule

机译:飞行后星尘样品返回胶囊的空气热分析

获取原文
获取原文并翻译 | 示例
           

摘要

The reentry of the Stardust sample return capsule was captured by several optical instruments through an observation campaign aboard the NASA DC-8 airborne observatory. Flow environments obtained from computational fluid dynamics solutions are loosely coupled with material response modeling to predict the surface temperature and the observed continuum emission of Stardust throughout the reentry. The calculated surface temperatures are compared with the data from several spectral instruments onboard the airborne observatory, including the ECHELLE (echelle-based spectrograph for the crisp and high efficient detection of low light emission) camera and conventional spectrometer in Czerny-Turner configuration. The ECHELLE camera recorded spectral intensity at a period in the trajectory before peak heating. The graybody curves corresponding to the average and area-averaged surface temperatures predicted by the computational fluid dynamics and material response coupled simulation have excellent agreement with the recorded data at altitudes lower than 74 km. At these altitudes, the computational fluid dynamics and material response coupling agrees with the surface temperature to within 50 K. The computational fluid dynamics calculation without the material response modeling overestimates surface temperatures because it does not take into account such things as ablation. The o verprediction of the computational fluid dynamics and material response simulated surface temperature early in the trajectory coincides with high-emission intensity lines corresponding to thermal paint products. The presence of paint on the heat shield could have contributed to the lower observed surface temperatures and could explain the overprediction by the simulated data, which does not account for the paint. The average surface temperatures resulting from the spectrometer in Czerny-Turner configuration telescope analysis agree to within less than 5% with the average surface temperatures predicted by the material response. This observation period included the point of peak heating. The calculated flux based on the surface temperature agrees well with the observed flux. Surface temperature is one of the critical parameters used in the design of thermal protection systems, because it is an indicator of material performance. The coupled computational fluid dynamics and material response approach employed in the present analysis increases confidence for future missions such as the crew exploration vehicle Orion.
机译:几台光学仪器通过NASA DC-8空中天文台上的观察运动,捕获了星尘样品返回舱的返回。从计算流体动力学解决方案获得的流动环境与材料响应模型松散耦合,以预测整个折返过程中的表面温度和星尘的观测到的连续体排放。将计算出的表面温度与来自机载天文台的几种光谱仪器的数据进行比较,其中包括ECHELLE(基于Echelle的光谱仪,用于清晰,高效地检测微弱发光)和Czerny-Turner配置的常规光谱仪。 ECHELLE摄像机在峰值加热之前的轨迹中的某个时段记录了光谱强度。通过计算流体动力学和材料响应耦合模拟预测的与平均和区域平均表面温度相对应的灰体曲线与海拔低于74 km的记录数据具有极好的一致性。在这些高度上,计算流体动力学和材料响应耦合与表面温度在50 K以内。在没有材料响应模型的情况下,计算流体力学计算会高估表面温度,因为它没有考虑消融等因素。在轨迹的早期对计算流体动力学和材料响应模拟表面温度的预测与对应于热喷涂产品的高发射强度线一致。隔热罩上涂料的存在可能有助于降低所观察到的表面温度,并且可以通过模拟数据解释过高的预测,这不能说明涂料。 Czerny-Turner配置望远镜分析中的光谱仪得出的平均表面温度与材料响应预测的平均表面温度相差不到5%。该观察期包括峰值加热点。根据表面温度计算出的通量与观察到的通量非常吻合。表面温度是热保护系统设计中使用的关键参数之一,因为它是材料性能的指标。本分析中采用的耦合计算流体动力学和材料响应方法提高了对未来任务(例如乘员探索车Orion)的信心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号