首页> 外文期刊>Journal of Spacecraft and Rockets >Postflight Aerothermal Analysis of the Stardust Sample Return Capsule
【24h】

Postflight Aerothermal Analysis of the Stardust Sample Return Capsule

机译:星尘样品返回胶囊的飞行后空气热分析

获取原文
获取原文并翻译 | 示例
           

摘要

The reentry of the Stardust sample return capsule was captured by several optical instruments through annobservation campaign aboard the NASA DC-8 airborne observatory. Flow environments obtained fromncomputational fluid dynamics solutions are loosely coupled with material response modeling to predict the surfacentemperature and the observed continuum emission of Stardust throughout the reentry. The calculated surfacentemperatures are compared with the data from several spectral instruments onboard the airborne observatory,nincluding the ECHELLE (echelle-based spectrograph for the crisp and high efficient detection of low light emission)ncamera and conventional spectrometer in Czerny–Turner configuration. The ECHELLE camera recorded spectralnintensity at a period in the trajectory before peak heating. The graybody curves corresponding to the average andnarea-averaged surface temperatures predicted by the computational fluid dynamics and material response couplednsimulation have excellent agreement with the recorded data at altitudes lower than 74 km. At these altitudes, thencomputational fluid dynamics and material response coupling agrees with the surface temperature to within 50 K.nThe computational fluid dynamics calculation without the material response modeling overestimates surfacentemperatures because it does not take into account such things as ablation. The overprediction of the computationalnfluid dynamics and material response simulated surface temperature early in the trajectory coincides with high-nemission intensity lines corresponding to thermal paint products. The presence of paint on the heat shield could havencontributed to the lower observed surface temperatures and could explain the overprediction by the simulated data,nwhich does not account for the paint. The average surface temperatures resulting fromthe spectrometer in Czerny–nTurner configuration telescope analysis agree to within less than 5% with the average surface temperaturesnpredicted by the material response. This observation period included the point of peak heating. The calculated fluxnbased on the surface temperature agrees well with the observed flux. Surface temperature is one of the criticalnparameters used in the design of thermal protection systems, because it is an indicator ofmaterial performance. Thencoupled computational fluid dynamics and material response approach employed in the present analysis increasesnconfidence for future missions such as the crew exploration vehicle Orion.
机译:星尘样品返回舱的再入是由几架光学仪器通过NASA DC-8空中观测台上的观测活动捕获的。从计算流体动力学解决方案获得的流动环境与材料响应模型松散耦合,以预测整个折返过程中的表面温度和星尘的观测连续体排放。将计算出的地表温度与机载天文台上几台光谱仪器的数据进行比较,其中包括ECHELLE(基于Eselle的光谱仪,用于清晰,高效地检测低发光),热像仪和Czerny-Turner配置中的常规光谱仪。 ECHELLE摄像机在峰值加热之前的轨迹中的某个时期记录光谱强度。由计算流体动力学和物质响应耦合模拟所预测的平均地表温度和国家平均地表温度的灰体曲线与海拔低于74 km的记录数据具有极好的一致性。在这些高度上,则计算流体动力学和材料响应耦合与表面温度在50 K以内。n没有材料响应模型的计算流体动力学计算会高估表面温度,因为它没有考虑消融等因素。在轨迹的早期对计算流体动力学和材料响应模拟表面温度的过度预测与对应于热喷涂产品的高发光强度线相吻合。隔热罩上涂料的存在可能有助于降低所观察到的表面温度,并且可以通过模拟数据解释过高的预测,这不能说明涂料。 Czerny–nTurner配置望远镜分析中的光谱仪得出的平均表面温度与材料响应所预测的平均表面温度n相差不到5%。该观察期包括峰值加热点。基于表面温度计算的通量与观察到的通量非常吻合。表面温度是热保护系统设计中使用的关键参数之一,因为它是材料性能的指标。然后,本分析中采用的计算流体动力学和材料响应方法相结合,增加了对未来任务(例如乘员探索车Orion)的信心。

著录项

  • 来源
    《Journal of Spacecraft and Rockets》 |2010年第5期|p.765-774|共10页
  • 作者单位

    Kerry A. Trumble∗NASA Ames Research Center, Moffett Field, California 94035Ioana Cozmuta†and Steve Sepka‡ELORET Corporation, Sunnyvale, California 94086Peter Jenniskens§SETI Institute, Mountain View, California 94043andMichael Winter¶NASA Ames Research Center, Moffett Field, California 94035;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号