首页> 外文期刊>Journal of Spacecraft and Rockets >Numerical Investigation of Roughness Effects on Transition on Spherical Capsules
【24h】

Numerical Investigation of Roughness Effects on Transition on Spherical Capsules

机译:粗糙度对球形胶囊过渡转变影响的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

To address the hitherto unknown mechanism of boundary-layer transition on blunt reentry capsules, the role of roughness-induced disturbance growth on a spherical-section forebody is assessed via optimal transient growth theory and direct numerical simulations (DNS). Optimal transient-growth studies have been performed for the blunt capsule experiments at Mach 5.9 in the Hypersonic Ludwieg tube at the Technische Universitat Braunschweig (HLB), which included measurements behind a patch of controlled, distributed micron-sized surface roughness. Transient-growth results for the HLB capsule indicate similar trends as the corresponding numerical data for a Mach 6 experiment in the Actively Controlled Expansion (ACE) facility of the Texas A&M University (TAMU) at a lower Reynolds number. Both configurations indicate a similar dependence on surface temperature ratio and, more important, rather low values of maximum energy gain. DNS are performed for the conditions of the HLB experiment to understand the generation of stationary disturbances by the roughness patch and the accompanying evolution of unsteady perturbations. However, no evidence of either modal or nonmodal disturbance growth in the wake of the roughness patch is found in the DNS data; thus, the physical mechanism underlying the observed onset of transition still remains unknown.
机译:为了解决迄今未知的钝性折返胶囊边界层过渡机制,通过最佳瞬态生长理论和直接数值模拟(DNS)评估了粗糙度引起的扰动增长在球形截面前体上的作用。在不伦瑞克工业大学(HLB)的Hypersonic Ludwieg管中,对马赫数5.9的钝头胶囊实验进行了最佳的瞬态生长研究,其中包括在一块受控的,分布的微米级表面粗糙度后面进行的测量。 HLB胶囊的瞬态增长结果表明趋势与德州农工大学(TAMU)的主动控制扩张(ACE)设施中以较低雷诺数进行的Mach 6实验的相应数值数据相似。两种配置都表明对表面温度比的相似依赖性,更重要的是,最大能量增益的值较低。在HLB实验的条件下执行DNS,以了解由粗糙度斑块引起的平稳扰动的产生以及伴随的非稳定扰动的演变。但是,在DNS数据中找不到在粗糙度补丁之后模态或非模态扰动增长的证据;因此,观察到的转变开始的物理机制仍然是未知的。

著录项

  • 来源
    《Journal of Spacecraft and Rockets》 |2019年第2期|388-404|共17页
  • 作者单位

    German Aerosp Ctr, DLR, Inst Aerodynam & Flow Technol, Bunsenstr 10, D-37073 Gottingen, Germany;

    German Aerosp Ctr, DLR, Inst Aerodynam & Flow Technol, Bunsenstr 10, D-37073 Gottingen, Germany;

    Tech Univ Munich, Chair Aerodynam & Fluid Mech, Boltzmannstr 15, D-85748 Garching, Germany;

    Tech Univ Munich, Chair Aerodynam & Fluid Mech, Boltzmannstr 15, D-85748 Garching, Germany;

    Rhein Westfal TH Aachen, Inst Aerodynam, Wullnerstr 5a, D-52062 Aachen, Germany;

    Rhein Westfal TH Aachen, Inst Aerodynam, Wullnerstr 5a, D-52062 Aachen, Germany;

    Natl Inst Aerosp, Computat AeroSci Branch, Hampton, VA 23666 USA|NASA Langley Res Ctr, Hampton, VA 23681 USA;

    NASA Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA;

    NASA Langley Res Ctr, Computat AeroSci Branch, Hampton, VA 23681 USA;

    Case Western Reserve Univ, Engn, Cleveland, OH 44106 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号