首页> 外文期刊>Journal of the Franklin Institute >A BP-PID controller-based multi-model control system for lateral stability of distributed drive electric vehicle
【24h】

A BP-PID controller-based multi-model control system for lateral stability of distributed drive electric vehicle

机译:基于BP-PID控制器的多模型控制系统,用于分布式驱动电动汽车的侧向稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

The lateral stability is the crucial feature in a distributed drive electronic vehicle (DDEV). A high speed DDEV in a sharp turn may lose the lateral stability when it encounters fast varied road adhesion coefficients. To solve this problem, a BP-PID controller-based multi-model control system (MMCS) is designed for DDEV via direct yaw-moment control (DYC) in this paper. Firstly, according to the varied road adhesion coefficients, the working circumstance of DDEV is summarized as seven kinds of typical types. A sub-model set is established to accurately describe the operating mode of the working circumstance. Secondly, based on the sub-model set, a nonlinear sub-controller set is constructed with seven off-line tuning BP-PID controllers and an on-line tuning one. The off-line tuning controller can fast calculate the required direct yaw-moment, and the on-line tuning controller is aimed to achieve a high control accuracy. Thirdly, a controller switching policy is composed of an error judgement policy and a model matching policy. Such switching policy is utilized to precisely identify the working circumstance of DDEV and implement switching control. Finally, simulation experiments prove that the designed MMCS shows a significant control performance and guarantees the lateral stability of DDEV under varied road adhesion coefficients. (C) 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
机译:横向稳定性是分布式驱动电子车辆(DDEV)的关键特征。当高速DDEV遇到快速变化的道路附着系数时,可能会失去横向稳定性。为了解决这个问题,本文设计了一种基于BP-PID控制器的多模型控制系统(MMCS),该系统通过直接偏航力矩控制(DYC)进行DDEV控制。首先,根据路面附着系数的变化,将DDEV的工作环境归纳为七种典型类型。建立子模型集以准确描述工作环境的操作模式。其次,基于子模型集,构造了一个非线性子控制器集,其中包含七个离线调整的BP-PID控制器和一个在线调整的控制器。离线调谐控制器可以快速计算出所需的直接偏航力矩,而在线调谐控制器旨在实现高控制精度。第三,控制器切换策略由错误判断策略和模型匹配策略组成。这种切换策略被用来精确地识别DDEV的工作环境并实现切换控制。最后,仿真实验表明,所设计的MMCS具有显着的控制性能,并在变化的路面附着系数下保证了DDEV的横向稳定性。 (C)2019富兰克林研究所。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《Journal of the Franklin Institute》 |2019年第13期|7290-7311|共22页
  • 作者单位

    Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China|Guilin Univ Elect Technol Coll & Univ Key Lab Intelligent Integrated Automa Guilin 541004 Peoples R China;

    Guilin Univ Elect Technol Coll & Univ Key Lab Intelligent Integrated Automa Guilin 541004 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号