首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations
【24h】

Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

机译:铁在高压下的多态性:具有有限弹塑性变形的位移过渡的3D相场模型

获取原文
获取原文并翻译 | 示例
           

摘要

A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ε-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ε transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ⇔ ε ⇔ α' (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.
机译:在大应变下,建立了将非线性弹塑性和多相场理论相结合的热力学一致框架。根据克劳修斯-杜恩不等式,亥姆霍兹自由能和时间依赖的本构关系引起材料中压力引起的马氏体相变的位移驱动力。通过使用能量格局的表示来获得非弹性力,这种形式涉及与晶格的点组对称操作有关的反应路径的概念。另一方面,对于大的应变和旋转以及非线性,各向异性和不同的弹性压力相关特性,在最一般的情况下会导出附加的弹力。将相场形式主义与有限的弹塑性变形相结合,应用到三维拉格朗日有限元方法中,并用于分析铁心心立方(α-Fe)转变为六方密堆积(ε-Fe)的相变。高静水压缩。模拟显示了塑性变形在形态和微观结构演变过程中所起的主要作用。由于变体之间没有强塑性的强大的远距离弹性相互作用,因此从前向α→ε过渡在能量上不利,并且保持不完整。但是,塑性耗散会大量释放所存储的应变能,从而导致α⇔ε⇔α'(正向和反向)多态相变以及意外的变体选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号