首页> 外文期刊>Journal of Vacuum Science & Technology >Growth and thermal conductivity analysis of polycrystalline GaAs on chemical vapor deposition diamond for use in thermal management of high-power semiconductor lasers
【24h】

Growth and thermal conductivity analysis of polycrystalline GaAs on chemical vapor deposition diamond for use in thermal management of high-power semiconductor lasers

机译:用于高功率半导体激光器热管理的化学气相沉积金刚石上多晶GaAs的生长和热导率分析

获取原文
获取原文并翻译 | 示例
           

摘要

The authors demonstrate the growth of polycrystalline GaAs thin films on polycrystalline chemical vapor deposition (CVD) diamond by low-temperature molecular beam epitaxy. The low-temperature GaAs (LT-GaAs) layer is easily polished compared to the CVD diamond, and this process results in a reduction of rms surface roughness from >50 to <5 nm. This makes the LT-GaAs on diamond layer an ideal wafer-bonding interface for high-power semiconductor devices. The samples were grown at 0.2 μm/h with a substrate temperature of 250 ℃ and a 1:8 III/V beam equivalent pressure ratio. The samples were analyzed by x-ray powder diffraction, atomic force microscopy for surface roughness, and in situ reflective high-energy electron diffraction during molecular beam epitaxy growth. The authors also measure the thermal conductivity of the GaAs layer on CVD diamond using pump-probe time domain thermoreflectance.
机译:作者通过低温分子束外延论证了多晶化学气相沉积(CVD)金刚石上多晶GaAs薄膜的生长。与CVD金刚石相比,低温GaAs(LT-GaAs)层易于抛光,并且此过程可将rms表面粗糙度从> 50降低到<5 nm。这使得金刚石层上的LT-GaAs成为大功率半导体器件的理想晶圆键合界面。样品以0.2μm/ h的速度生长,衬底温度为250℃,III / V束当量压力比为1:8。通过X射线粉末衍射,原子力显微镜检查表面粗糙度以及分子束外延生长过程中的原位反射高能电子衍射对样品进行分析。作者还使用泵浦探针时域热反射率来测量CVD金刚石上GaAs层的热导率。

著录项

  • 来源
    《Journal of Vacuum Science & Technology》 |2011年第3期|p.03C130.1-03C130.4|共4页
  • 作者单位

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque,New Mexico 87106;

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque,New Mexico 87106;

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque,New Mexico 87106;

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque,New Mexico 87106;

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque,New Mexico 87106;

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque,New Mexico 87106;

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque,New Mexico 87106;

    Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque,New Mexico 87106;

    Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185;

    Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185;

    College of Optical Sciences, University of Arizona, Tucson, Arizona 85721;

    College of Optical Sciences, University of Arizona, Tucson, Arizona 85721;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号