首页> 外文期刊>Macromolecular reaction engineering >Modeling of Anionic Polymerization in Flow With Coupled Variations of Concentration, Viscosity, and Diffusivity
【24h】

Modeling of Anionic Polymerization in Flow With Coupled Variations of Concentration, Viscosity, and Diffusivity

机译:具有浓度,粘度和扩散率耦合变化的流动中阴离子聚合的建模

获取原文
获取原文并翻译 | 示例
           

摘要

This paper explains the reasons behind the very low polydispersity index (PDI) obtained in living anionic polymerizations in microstructured reactors. From the results, it can be explained that a narrow molecular weight distribution can be obtained due to the presence of a highly segregated flow behavior, even in microflow conditions, provided that the mean residence time is high enough. This paper investigates the feasibility of a living anionic polymerization reaction under micro-fluidic conditions. This is accomplished using a multi-physics model that accounts for the changes in viscosity and diffusivity. These properties descend with the increase in weight of the polymer, and could not be un-coupled from hydrodynamics and mass transfer. The results of the model are used to understand the reasons behind the very low PDI that can be experimentally obtained in microflow conditions. This leads to the conclusion that the increased viscosity almost "suppresses" the diffusion of the monomer, even at the very short characteristic lengths of a micro-device. These conditions generate a fully segregated flow that yields an almost monodisperse polymer regardless of the effective residence time distribution encountered in the reactor.
机译:本文解释了在微结构化反应器中的活性阴离子聚合中获得极低的多分散指数(PDI)的原因。从该结果可以解释,由于平均停留时间足够长,即使在微流条件下,由于存在高度分离的流动行为,也可以获得窄的分子量分布。本文研究了在微流体条件下活性阴离子聚合反应的可行性。这是通过考虑粘度和扩散率变化的多物理场模型完成的。这些性质随着聚合物重量的增加而下降,并且不能与流体力学和传质分离。模型的结果用于了解在微流条件下可以通过实验获得非常低的PDI的原因。这得出结论,即使在微装置的特征长度很短的情况下,增加的粘度也几乎“抑制”了单体的扩散。这些条件产生了完全隔离的流动,无论反应器中遇到的有效停留时间分布如何,都将产生几乎单分散的聚合物。

著录项

  • 来源
    《Macromolecular reaction engineering》 |2012年第12期|507-515|共9页
  • 作者单位

    Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Microflow Chemistry and Process Technology Croup, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands;

    Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Microflow Chemistry and Process Technology Croup, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands;

    Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Microflow Chemistry and Process Technology Croup, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands;

    Faculty of Chemistry, Institute of Chemical Technology,University of Stuttgart, Stuttgart, Germany;

    Faculty of Chemistry, Institute of Chemical Technology,University of Stuttgart, Stuttgart, Germany;

    Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Microflow Chemistry and Process Technology Croup, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号