...
首页> 外文期刊>Marine ecology progress series >Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension
【24h】

Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension

机译:海草床(Zostera noltii和滨海鲈)对近床水动力和沉积物重悬的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The main objectives of this flume study were to (1) quantify density dependent effects of the short-leaf seagrass Zostera nolti on hydrodynamics and sediment resuspension from a sandy bed, and (2) measure the erodability of 2 contrasting sediments (sandy and muddy) and the extent to which this is modified by the presence of 2 seagrass species, Z. noltii (sandy) and Z. marina (muddy). Field measurements of near-bed tidal currents, turbulence and suspended particulate matter at 2 different Z. noltii locations (low energy [sheltered] and higher energy [exposed] environments) were interpreted in the context of the flume results. Skimming flow above the high density bed of Z. noltii was accompanied by a 40 % reduction in near-bed flow, but this was offset by a 2-fold increase in turbulent kinetic energy (TKE) and bed shear stress (τ_0). Despite this increase in τ_0 there was an increase in sediment stabilisation with increasing seagrass density (10-fold increase in critical bed shear stress for erosion [τ_e] from 0.1 [bare sediment] to 1.0 Pa at the highest shoot density). This was largely explained by the increased microphytobenthos abundance (reflected in the higher chlorophyll a and carbohydrate contents) and a lower density of the grazer and bio-destabiliser Hydrobia ulvae. In contrast, the muddy site was more easily eroded (10-fold higher), with Z. marina having little effect on sediment erodability (bare:τ_e = 0.05 Pa; Z. marina:τ_e = 0.07 Pa). This higher erodability was due to differences in hydrodynamics and the physical/biological properties of the sediment.
机译:这项水槽研究的主要目的是(1)量化短叶海草Zostera nolti对水动力和沙质悬浮物的密度依赖性影响,以及(2)测量2种对比沉积物(砂质和泥质)的易蚀性以及由于存在两种海草物种,即诺氏梭菌(桑迪)和滨海梭菌(泥泞)而改变的程度。在水槽结果的背景下,解释了在2个不同的Z. noltii位置(低能量[避开]和高能量[暴露]的环境)附近床潮流,湍流和悬浮颗粒物的现场测量。 Z. noltii高密度床上方的撇油流量使近床流量减少40%,但这被湍动能(TKE)和床剪切应力(τ_0)的2倍增加所抵消。尽管τ_0有所增加,但随着海草密度的增加,沉积物的稳定性也有所提高(在最高芽密度下,侵蚀的临界床剪应力[τ_e]从0.1 [裸露的沉积物]增加到10 Pa的10倍)。这在很大程度上是由于微植物底栖动物的丰度增加(反映在较高的叶绿素a和碳水化合物含量中)以及较低的放牧者和破坏生物的Hydro虫Hydrobia ulvae密度造成的。相比之下,浑浊的部位更容易被侵蚀(高10倍),而滨海梭菌对沉积物的侵蚀性几乎没有影响(裸露:τ_e= 0.05 Pa;滨海梭菌:τ_e= 0.07 Pa)。这种较高的可蚀性是由于流体动力学和沉积物的物理/生物学特性的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号